We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Clinical Antibody Test to Quickly Detect Even Low Levels of Common Parasitic Infection

By LabMedica International staff writers
Posted on 23 Oct 2024
Print article
Image: The new tool could improve diagnosis of a common tropical disease (Photo courtesy of Sci. Transl. Med. (2024). DOI: 10.1126/scitranslmed.adk7832)
Image: The new tool could improve diagnosis of a common tropical disease (Photo courtesy of Sci. Transl. Med. (2024). DOI: 10.1126/scitranslmed.adk7832)

Neglected tropical diseases encompass a range of conditions that impact millions of individuals worldwide, primarily in impoverished regions, yet they often lack the scientific focus they require. Schistosomiasis is one such disease—a chronic parasitic infection affecting approximately 250 million people across 78 countries, especially in Africa and Latin America. Due to the limited research on schistosomiasis, advancements in diagnostic tools and treatments frequently take a backseat. Existing diagnostics for schistosomiasis do not consistently identify the infection in its early or mild stages, and blood tests often struggle to differentiate between active and past infections. If left undiagnosed and untreated, schistosomiasis can result in severe complications affecting the bladder or liver. Researchers have now identified methods to detect schistosomiasis when other, less sensitive tests fail, allowing for earlier treatment that can improve long-term outcomes.

The research findings, reported by the team at Emory University’s School of Medicine (Atlanta, GA, USA) in Science Translational Medicine, indicate potential for developing a clinical antibody test that can swiftly and easily identify even low levels of the infection. The traditional gold standard for diagnosis is the microscopic visualization of schistosoma parasite eggs, a process that can be labor-intensive and may miss infections. By integrating their expertise in infectious diseases with biological data analytics, the researchers devised a novel and previously unrecognized method for diagnosing schistosomiasis. They employed interpretable machine learning to distinguish individuals with active infections from those with past infections. Their machine learning platform was able to identify groups of biomarkers for schistosomiasis that provided valuable insights into the disease's progression in specific patients.

When comparing healthy individuals to those with infections across two human cohorts from Brazil and Kenya, the researchers uncovered previously uncharacterized signatures of active disease that can facilitate more accurate diagnosis. According to the team, basing the diagnosis on the characteristics of groups of antibodies rather than the quantity of a single marker will enhance the reliability of early disease detection. Ultimately, the researchers aim to scale the antibody test sufficiently so that it can replace many existing diagnostic techniques and be implemented quickly and easily in rural areas where schistosomiasis is most commonly found. They are optimistic that the collaboration between infectious disease expertise and machine-assisted data analysis can significantly contribute to public health.

Gold Member
Troponin T QC
Troponin T Quality Control
Verification Panels for Assay Development & QC
Seroconversion Panels
New
Immunofluorescence Analyzer
MPQuanti
New
Silver Member
Total Hemoglobin Monitoring System
GREENCARE Hb

Print article

Channels

Clinical Chemistry

view channel
Image: The tiny clay-based materials can be customized for a range of medical applications (Photo courtesy of Angira Roy and Sam O’Keefe)

‘Brilliantly Luminous’ Nanoscale Chemical Tool to Improve Disease Detection

Thousands of commercially available glowing molecules known as fluorophores are commonly used in medical imaging, disease detection, biomarker tagging, and chemical analysis. They are also integral in... Read more

Immunology

view channel
Image: The cancer stem cell test can accurately choose more effective treatments (Photo courtesy of University of Cincinnati)

Stem Cell Test Predicts Treatment Outcome for Patients with Platinum-Resistant Ovarian Cancer

Epithelial ovarian cancer frequently responds to chemotherapy initially, but eventually, the tumor develops resistance to the therapy, leading to regrowth. This resistance is partially due to the activation... Read more

Microbiology

view channel
Image: The lab-in-tube assay could improve TB diagnoses in rural or resource-limited areas (Photo courtesy of Kenny Lass/Tulane University)

Handheld Device Delivers Low-Cost TB Results in Less Than One Hour

Tuberculosis (TB) remains the deadliest infectious disease globally, affecting an estimated 10 million people annually. In 2021, about 4.2 million TB cases went undiagnosed or unreported, mainly due to... Read more

Technology

view channel
Image: The HIV-1 self-testing chip will be capable of selectively detecting HIV in whole blood samples (Photo courtesy of Shutterstock)

Disposable Microchip Technology Could Selectively Detect HIV in Whole Blood Samples

As of the end of 2023, approximately 40 million people globally were living with HIV, and around 630,000 individuals died from AIDS-related illnesses that same year. Despite a substantial decline in deaths... Read more

Industry

view channel
Image: The collaboration aims to leverage Oxford Nanopore\'s sequencing platform and Cepheid\'s GeneXpert system to advance the field of sequencing for infectious diseases (Photo courtesy of Cepheid)

Cepheid and Oxford Nanopore Technologies Partner on Advancing Automated Sequencing-Based Solutions

Cepheid (Sunnyvale, CA, USA), a leading molecular diagnostics company, and Oxford Nanopore Technologies (Oxford, UK), the company behind a new generation of sequencing-based molecular analysis technologies,... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.