We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Diffraction Phase Microscopy Reveals Mechanics of Erythrocyte Membranes

By LabMedica International staff writers
Posted on 29 Apr 2010
Print article
Image: Erythrocytes (photo courtesy Mustafa Mir, Sam Copeland, and Gabriel Popescu. Additional information may be found at http://light.ece.uiuc.edu).
Image: Erythrocytes (photo courtesy Mustafa Mir, Sam Copeland, and Gabriel Popescu. Additional information may be found at http://light.ece.uiuc.edu).
A novel measurement technique called diffraction phase microscopy uses two beams of light in contrast to other microscopes that only use one.

Using diffraction phase microscopy a team of scientists developed a model that could lead to breakthroughs in screening and treatment of blood-cell-morphology diseases, such as malaria, sickle-cell disease, and spherocytosis. It could also be used to screen banked blood for membrane flexibility before transfusion, since stored blood often undergoes cellular shape changes.

In circulation, erythrocytes or red blood cells (RBCs) must contort to squeeze through capillaries half their diameter. Their flexibility and resilience come from their membrane structure, which couples a typical lipid bilayer with an underlying matrix of protein. However, knowledge of the membrane's mechanics is very limited.

Prof. Gabriel Popescu of the electrical and computer engineering department at the University of Illinois at Urbana Champaign (Champaign, IL, USA) and colleagues were able to see nanoscale membrane fluctuations in live cells, and to measure them quantitatively. The group published its findings in the April 13, 2010 publication of the Proceedings of the [U.S.] National Academy of Sciences (PNAS).

In addition to normal cells, the team also measured two other morphologies: bumpy RBCs called echinocytes and round ones called spherocytes. They discovered that these deformed cells display less flexibility in their membranes, a finding that could provide insight into mechanics and treatment of diseases.

Because diffraction phase microscopy measures live cells without physically manipulating or damaging them, it also could be used to evaluate medications being developed to treat blood cell morphology diseases, according to Prof. Popescu. "We can study the mechanics of a single cell under different pharmacological conditions, and I think that would be ideal for testing drugs," he said.

Related Links:
University of Illinois at Urbana Champaign


New
Gold Member
Syphilis Screening Test
VDRL Antigen MR
Automated Blood Typing System
IH-500 NEXT
New
Rocking Shaker
HumaRock
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.