We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Revolutionary Molecular Culture ID Technology to Transform Bacterial Diagnostics

By LabMedica International staff writers
Posted on 02 Oct 2024
Print article
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)
Image: The inbiome molecular culture ID technology has received FDA breakthrough device designation (Photo courtesy of inbiome)

Bacterial infections pose a major threat to public health, contributing to one in five deaths worldwide. Current diagnostic methods often take several days to provide results, which can delay appropriate treatment, extend hospital stays, and negatively affect patient outcomes. Given that hospitals conduct hundreds of bacterial diagnostic tests daily, this lag in diagnosis is a critical issue. Now, a groundbreaking technology is set to revolutionize the field of infectious disease diagnostics, offering faster and more accurate treatment, saving lives, and improving patient outcomes.

inbiome (Amsterdam, The Netherlands) has introduced Molecular Culture ID, a new diagnostic test that combines advanced chemistry with artificial intelligence (AI) to quickly detect and identify over 200 bacterial species from various bodily samples. This innovative technology delivers same-day, highly accurate diagnoses, drastically reducing waiting times, improving patient outcomes, and lowering healthcare costs. Molecular Culture ID enhances the diagnosis of critical infections, such as pleural, peritoneal, joint, bone, pericardial, and surgical wound infections, marking a significant leap forward in the timely and effective treatment of bacterial infections.

Molecular Culture ID is the first in a series of diagnostic advancements that inbiome plans to launch in the coming years. The company aims to achieve same-day diagnostics for all infectious diseases by 2030, a goal that promises to revolutionize global healthcare and patient care. The U.S. Food and Drug Administration (FDA) has granted Breakthrough Device Designation for the Molecular Culture ID. inbiome is planning to introduce the technology to the U.S. market by early 2026 and is collaborating with leading U.S. hospitals on implementation studies to ensure seamless integration into hospital workflows.

"We are honored to receive this designation from the FDA," said Dries Budding, CEO of inbiome. "With Molecular Culture ID our ambition is to revolutionize diagnostics of infectious diseases. This recognition by the FDA will help us bring this innovation to patient care as soon as possible."

Related Links:
inbiome 

Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Gold Member
Turnkey Packaging Solution
HLX
New
Hematology Analyzer
BH-6180
New
Strep Pneumoniae Rapid Test
Strep Pneumoniae (6503 – 6573)

Print article

Channels

Molecular Diagnostics

view channel
Image: This joint effort will use samples from KU ADRC research to validate a blood test developed by BYU (Photo courtesy of KU ADRC)

Blood Test for Early Alzheimer’s Detection Could Help Slow Disease Progression

When brain cells, such as those affected by Alzheimer’s disease, die, small fragments of DNA are released into the bloodstream. These fragments, known as cell-free DNA, carry valuable information, including... Read more

Hematology

view channel
Image: Personalized blood count could lead to early intervention for common diseases (Photo courtesy of 123RF)

Personalized CBC Testing Could Help Diagnose Early-Stage Diseases in Healthy Individuals

A complete blood count (CBC) screening is a standard examination most physicians request for healthy adults. This test is essential for evaluating a patient’s overall health with a single blood sample.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Pathology

view channel
Image: These images show the high resolution achieved with the new microscopy technique (Photo courtesy of Cao, R. et al. Science Advance, 2024. Caltech)

New Microscopy Technique Enables Rapid Tumor Analysis by Surgeons in OR

The current standard method for quickly sampling and imaging tissue during surgery involves taking a biopsy, freezing the sample, staining it to enhance visibility, and slicing it into thin sections that... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.