We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanorobotic Hand Made of DNA Grabs Viruses for Detection or Inhibition

By LabMedica International staff writers
Posted on 28 Nov 2024
Print article
Image: In this artist’s rendering, three “NanoGripper” hands wrap around a COVID-19 virus (Photo courtesy of Xing Wang/U. of I.)
Image: In this artist’s rendering, three “NanoGripper” hands wrap around a COVID-19 virus (Photo courtesy of Xing Wang/U. of I.)

Researchers have developed a miniature, four-fingered “hand” from a single piece of DNA, designed to detect the virus responsible for COVID-19 with high sensitivity, and even prevent viral particles from entering cells to cause infection. Known as the NanoGripper, this nanorobotic hand can be customized to interact with other viruses or identify cell surface markers, potentially enabling targeted drug delivery, such as cancer treatments.

Drawing inspiration from the grasping ability of human hands and bird claws, researchers at the University of Illinois Urbana-Champaign (Champaign, IL, USA) designed the NanoGripper, which consists of four flexible fingers and a palm, all formed from one DNA nanostructure. Each finger features three joints, similar to a human finger, with its bending angle controlled by the design of the DNA scaffold. The fingers include DNA aptamers, molecules engineered to specifically bind to targets like the spike protein of the COVID-19 virus, causing the fingers to bend and encircle the target. The NanoGripper's base can attach to surfaces or other complexes, making it suitable for biomedical applications, such as sensing or drug delivery. For COVID-19 detection, the researchers integrated the NanoGripper with a photonic crystal sensor, resulting in a rapid 30-minute COVID-19 test that matches the sensitivity of traditional qPCR tests used in hospitals, which, while accurate, take longer than at-home tests.

Apart from diagnostics, the NanoGripper has potential applications in preventive medicine. The researchers discovered that when NanoGrippers were introduced into cell cultures exposed to COVID-19, the grippers surrounded the viruses, blocking the viral spike proteins from binding to the cell receptors, effectively preventing infection. In their article published in Science Robotics, the researchers explain that the NanoGripper can be easily modified to target other viruses, such as influenza, HIV, or hepatitis B. Additionally, they foresee using the NanoGripper for targeted drug delivery, where the fingers could be engineered to recognize specific cancer markers and deliver therapeutic agents directly to the affected cells.

“This approach has bigger potential than the few examples we demonstrated in this work,” said Xing Wang, a professor of bioengineering and of chemistry at the U. of I., who led the research team. “There are some adjustments we would have to make with the 3D structure, the stability and the targeting aptamers or nanobodies, but we’ve developed several techniques to do this in the lab. Of course it would require a lot of testing, but the potential applications for cancer treatment and the sensitivity achieved for diagnostic applications showcase the power of soft nanorobotics.”

Gold Member
Turnkey Packaging Solution
HLX
Gold Member
Hematology Analyzer
Swelab Lumi
New
Entamoeba Test
RIDASCREEN Entamoeba Test
New
Epstein-Barr Virus Test
ZEUS IFA Epstein-Barr Virus VCA IgG Test

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.