We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Sepsis Test Uses Magnetic Nanoparticles to Detect Bacterial Pathogens

By LabMedica International staff writers
Posted on 24 Aug 2023
Print article
Image: Magnetic nanoparticles (red) bind specifically to the spherical bacteria (yellow) (Photo courtesy of Empa)
Image: Magnetic nanoparticles (red) bind specifically to the spherical bacteria (yellow) (Photo courtesy of Empa)

When it comes to life-threatening blood poisoning caused by staphylococcus bacteria, quick identification of the bacteria in the bloodstream is vital to begin life-saving treatment. This urgency stems from the fact that staphylococcal sepsis results in fatality for up to 40% of cases. The infection, triggered by spherical bacteria, might initially manifest as a local skin ailment or pneumonia. However, when staphylococci infiltrate the bloodstream during sepsis, severe complications can emerge. In such critical scenarios, prompt identification of pathogens and selection of suitable antibiotics are vital. This is especially crucial as Staphylococcus aureus strains can exhibit resistance to multiple antibiotics. Researchers have now developed "sepsis sensors" using magnetic nanoparticles that enable rapid detection of bacterial pathogens and identification of appropriate antibiotic candidates.

Researchers at Empa (Dübendorf, Switzerland), along with their colleagues from ETH Zurich (Zürich, Switzerland), looked for a way to bypass the lengthy intermediate step of first cultivating the bacteria in a blood sample for a diagnostic procedure. They developed a method utilizing magnetic nanoparticles that are capable of binding to staphylococci. Consequently, these bacteria can be identified through the application of a magnetic field. Subsequently, antibiotic sensitivity is assessed using a chemiluminescence technique. If antibiotic-resistant bacteria are present in the sample, it emits light. Conversely, if the bacteria can be eradicated with antibiotics, the reaction vessel remains dark.

Another problematic bacterial entity is Pseudomonas aeruginosa, a rod-shaped bacterium capable of causing various illnesses, including urinary tract infections via catheterization during hospital stays. Such infections can develop into sepsis, and these pathogens are often resistant to numerous antibiotics. In such cases, magnetic nanoparticles offer the distinct advantage of versatility. The approach can be customized for different bacteria types, similar to a modular system. This adaptability enabled the researchers to design a rapid "sepsis sensor" leveraging magnetic nanoparticles. In samples containing synthetic urine, this method reliably identified bacterial species and gauged potential antibiotic resistance through chemiluminescence reactions. So far, the researchers have assessed their magnetic nanoparticle toolkit for sepsis and urinary tract infections using laboratory samples. In the coming phase, the team plans to validate the sepsis tests alongside their clinical partners by analyzing patient samples.

"All in all, the sepsis test takes around three hours – compared to several days for a classic cultivation of bacterial cultures," said Empa researcher Fei Pan.

Related Links:
Empa 
ETH Zurich 

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Thyroxine ELISA
T4 ELISA
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.