We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Sepsis Test Uses Magnetic Nanoparticles to Detect Bacterial Pathogens

By LabMedica International staff writers
Posted on 24 Aug 2023
Print article
Image: Magnetic nanoparticles (red) bind specifically to the spherical bacteria (yellow) (Photo courtesy of Empa)
Image: Magnetic nanoparticles (red) bind specifically to the spherical bacteria (yellow) (Photo courtesy of Empa)

When it comes to life-threatening blood poisoning caused by staphylococcus bacteria, quick identification of the bacteria in the bloodstream is vital to begin life-saving treatment. This urgency stems from the fact that staphylococcal sepsis results in fatality for up to 40% of cases. The infection, triggered by spherical bacteria, might initially manifest as a local skin ailment or pneumonia. However, when staphylococci infiltrate the bloodstream during sepsis, severe complications can emerge. In such critical scenarios, prompt identification of pathogens and selection of suitable antibiotics are vital. This is especially crucial as Staphylococcus aureus strains can exhibit resistance to multiple antibiotics. Researchers have now developed "sepsis sensors" using magnetic nanoparticles that enable rapid detection of bacterial pathogens and identification of appropriate antibiotic candidates.

Researchers at Empa (Dübendorf, Switzerland), along with their colleagues from ETH Zurich (Zürich, Switzerland), looked for a way to bypass the lengthy intermediate step of first cultivating the bacteria in a blood sample for a diagnostic procedure. They developed a method utilizing magnetic nanoparticles that are capable of binding to staphylococci. Consequently, these bacteria can be identified through the application of a magnetic field. Subsequently, antibiotic sensitivity is assessed using a chemiluminescence technique. If antibiotic-resistant bacteria are present in the sample, it emits light. Conversely, if the bacteria can be eradicated with antibiotics, the reaction vessel remains dark.

Another problematic bacterial entity is Pseudomonas aeruginosa, a rod-shaped bacterium capable of causing various illnesses, including urinary tract infections via catheterization during hospital stays. Such infections can develop into sepsis, and these pathogens are often resistant to numerous antibiotics. In such cases, magnetic nanoparticles offer the distinct advantage of versatility. The approach can be customized for different bacteria types, similar to a modular system. This adaptability enabled the researchers to design a rapid "sepsis sensor" leveraging magnetic nanoparticles. In samples containing synthetic urine, this method reliably identified bacterial species and gauged potential antibiotic resistance through chemiluminescence reactions. So far, the researchers have assessed their magnetic nanoparticle toolkit for sepsis and urinary tract infections using laboratory samples. In the coming phase, the team plans to validate the sepsis tests alongside their clinical partners by analyzing patient samples.

"All in all, the sepsis test takes around three hours – compared to several days for a classic cultivation of bacterial cultures," said Empa researcher Fei Pan.

Related Links:
Empa 
ETH Zurich 

Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Gold Member
Hematology Analyzer
Swelab Lumi
New
Chagas Disease Test
Simple/Stick Chagas/WB
New
Urine Drug Test
Instant-view Buprenorphine Urine Drug Test

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.