We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Barcode Technology to Help Diagnose Cancer More Precisely

By LabMedica International staff writers
Posted on 22 Nov 2024
Print article
Image: Patho-DBiT reveals cellular level tissue architecture of an aggressive gastric lymphoma sample stored for 3 years (Photo courtesy of Yale)
Image: Patho-DBiT reveals cellular level tissue architecture of an aggressive gastric lymphoma sample stored for 3 years (Photo courtesy of Yale)

A new pathology tool utilizing barcode technology shows promise for use in cancer diagnoses.

Developed at Yale School of Medicine (New Haven, CT, USA), this tool, called Patho-DBiT (pathology-compatible deterministic barcoding in tissue), leverages DNA barcoding to map the spatial relationships between RNA and proteins, enabling a comprehensive examination of RNA, some types of which play regulatory roles in cancer. The innovation lies in its use of microfluidic devices that deliver barcodes into tissue from two directions, creating a unique 2D “mosaic” of pixels. This mosaic provides spatial information that could be crucial for developing patient-specific targeted therapies.

In their study published in the journal Cell, the researchers explain how Patho-DBiT could unlock a vast amount of information preserved in tissue biopsy samples. Potential future applications of this technology include the creation of targeted therapies and understanding the mechanisms behind the transformation of low-grade tumors into more aggressive forms, which could help find ways to prevent this progression. However, further research is required to test and validate patient samples before Patho-DBiT can be integrated into routine pathology diagnostics.

“It’s the first time we can directly ‘see’ all kinds of RNA species, where they are and what they do, in clinical tissue samples,” said Yale’s Rong Fan, PhD, senior author of the study. “Using this tool, we’re able to better understand the fascinating biology of each RNA molecule which has a very rich life cycle beyond just knowing whether each gene is expressed or not. I think it’s going to completely transform how we study the biology of humans in the future.”

“There are millions of these tissues that have been archived for so many years, but up until now, we didn’t have effective tools to investigate them at spatial level,” said the study’s first author Zhiliang Bai, PhD, a postdoctoral associate in Fan’s lab. “RNA molecules in these tissues we’re looking at are highly fragmented and traditional methods can’t capture all the important information about them. It’s why we’re very excited about Patho-DBiT.”

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Syphilis Infection Test
IMPACT RPR
New
Gastrointestinal Infection Test
REALQUALITY ETEC/EIEC

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.