We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Microscopy Method Enables Detailed Whole Brain 3D RNA Analysis

By LabMedica International staff writers
Posted on 26 Nov 2024
Print article
Image: Image: Eight-week-old mouse brain (Photo courtesy of Science)
Image: Image: Eight-week-old mouse brain (Photo courtesy of Science)

Despite significant advancements in RNA analysis, linking RNA data to its spatial context, particularly in intact, detailed three-dimensional (3D) tissue volumes, has remained a challenging task. Researchers have now developed a microscopy technique that allows for detailed 3D RNA analysis at the cellular level within whole, intact mouse brains. This new method, known as TRISCO, has the potential to revolutionize our understanding of brain function in both healthy and diseased states, as demonstrated in a study published in Science.

The TRISCO technique, developed by researchers at Karolinska Institutet (Stockholm, Sweden) and Karolinska University Hospital (Stockholm, Sweden), enables 3D RNA imaging of entire mouse brains without requiring the brain to be sliced into thin sections, which was a necessary step in previous methods. In the study, up to three different RNA molecules were analyzed simultaneously. The researchers plan to expand this technique to analyze approximately one hundred RNA molecules using multiplex RNA analysis, which could provide even deeper insights into brain function and disease mechanisms.

The TRISCO method opens up new avenues for studying the intricate complexity of the brain, potentially leading to the development of novel treatments for a variety of brain disorders. While the study focused on intact mouse brains, it also shows that the TRISCO method is adaptable to larger brains, such as those of guinea pigs, as well as various tissues, including the kidney, heart, and lungs.

“This method is a powerful tool that can drive brain research forward. With TRISCO, we can study the complex anatomical structure of the brain in a way that was previously not possible,” said Per Uhlén, professor at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet, and the study's last author.

Gold Member
Turnkey Packaging Solution
HLX
Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
New
Lysing Machine
FastPrep-24 5G
New
Electroporation System
Gibco CTS Xenon

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.