We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




AI Method Measures Cancer Severity Using Pathology Reports

By LabMedica International staff writers
Posted on 27 Nov 2024
Print article
Image: Researchers have used an AI model to automate cancer pathology reports (Photo courtesy of Shutterstock)
Image: Researchers have used an AI model to automate cancer pathology reports (Photo courtesy of Shutterstock)

Researchers often rely on tumor registries, which are databases managed by hospitals and government agencies, to screen cancer patients for clinical trials. These registries require specialized staff to manually assess a patient’s cancer stage by reviewing various documents, including laboratory reports and clinicians’ notes. This process can be time-consuming, and by the time the patient’s information is added to the registry, months may have passed, potentially missing the opportunity for the patient to participate in clinical trials or receive other treatments. Now, researchers have developed and successfully tested an artificial intelligence (AI) method that can significantly reduce this delay, enhancing the pace of research and broadening patient access to clinical trials.

The AI method, developed by a group of investigators led by Cedars-Sinai (Los Angeles, CA, USA), uses pathology reports to automatically classify patients by the severity of their cancers, potentially speeding up the clinical trial selection process. This breakthrough, outlined in the peer-reviewed journal Nature Communications, not only has the potential to streamline the launch of cancer clinical trials but also represents a significant expansion of AI’s role in healthcare. The development of this AI model was made possible by previous research that overcame technical challenges in extracting and analyzing pathologists’ notes from electronic health records. The AI model can quickly determine the cancer stage by interpreting a specific component of the patient's electronic health record: the pathology report, which details the findings from pathologists’ examination of tissue samples. In tests with thousands of patient records, the researchers confirmed that their AI model effectively staged patients’ cancers.

The method is based on a transformer AI model, which mimics the complex decision-making abilities of the human brain. To develop the model, the researchers first trained it using publicly available pathology reports from The Cancer Genome Atlas, a government database containing data from nearly 7,000 patients across 23 types of cancers. To test its versatility, the model was then applied to nearly 8,000 pathology reports from a single medical center. The results, measured using a standard AI evaluation statistic, showed that the model performed with high accuracy. In addition to screening patients for clinical trials based on their cancer stages, the AI model can also automate the classification of patients for observational studies, retrospective data analysis, and treatment planning. The researchers have made their AI model, named BB-TEN (Big Bird – TNM staging Extracted from Notes), available to other institutions for academic and certain other uses.

“By speeding up the selection of candidates for cancer clinical trials, this innovative AI model shows promise for accelerating the development of relevant treatments and making them available to more patients,” said Jason Moore, PhD, chair of the Department of Computational Biomedicine at Cedars-Sinai.

Gold Member
Turnkey Packaging Solution
HLX
New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
New
Syphilis Infection Test
IMPACT RPR
New
CMV QC
Inactivated Cytomegalovirus High Control

Print article

Channels

Hematology

view channel
Image: The new test could improve specialist transplant and transfusion practice as well as blood banking (Photo courtesy of NHS Blood and Transplant)

New Test Assesses Oxygen Delivering Ability of Red Blood Cells by Measuring Their Shape

The release of oxygen by red blood cells is a critical process for oxygenating the body's tissues, including organs and muscles, particularly in individuals receiving large blood transfusions.... Read more

Immunology

view channel
Image: Concept for the device. Memory B cells able to bind influenza virus remain stuck to channels despite shear forces (Photo courtesy of Steven George/UC Davis)

Microfluidic Chip-Based Device to Measure Viral Immunity

Each winter, a new variant of influenza emerges, posing a challenge for immunity. People who have previously been infected or vaccinated against the flu may have some level of protection, but how well... Read more

Microbiology

view channel
Image: The iFAST reader scans 5000 individual bacteria with each sample analyzed in less than a minute (Photo courtesy of iFAST)

High-Throughput AST System Uses Microchip Technology to Rapidly Analyze Bacterial Samples

Bacteria are becoming increasingly resistant to antibiotics, with resistance levels ranging from 20% to 98%, and these levels are unpredictable. Currently, antimicrobial susceptibility testing (AST) takes... Read more

Technology

view channel
Image: Human tear film protein sampling methods (Photo courtesy of Clinical Proteomics. 2024 Mar 13;21:23. doi: 10.1186/s12014-024-09475-8)

New Lens Method Analyzes Tears for Early Disease Detection

Bodily fluids, including tears and saliva, carry proteins that are released from different parts of the body. The presence of specific proteins in these biofluids can be a sign of health issues.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.