We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Pocket-Sized Invention Revolutionizes Ability to Swiftly Detect Pathogens in Hospital Setting

By LabMedica International staff writers
Posted on 17 Jul 2024
Print article
Image: A smartphone records the Raman spectrum of an unknown material for further analysis (Photo courtesy of Texas A&M University Engineering)
Image: A smartphone records the Raman spectrum of an unknown material for further analysis (Photo courtesy of Texas A&M University Engineering)

Traditionally, the detection of pathogens in a hospital environment could take several days. Now, a new technology combining a cellphone camera with a Raman spectrometer—a sophisticated laser-based chemical analysis tool—enables the rapid detection of drugs, chemicals, and biological molecules that are invisible to the naked eye.

Engineers at Texas A&M University Engineering (College Station, TX, USA) have developed a handheld cellphone-based Raman spectrometer system. This device allows for the non-invasive identification of potentially hazardous chemicals or materials directly in the field, particularly beneficial in remote locations where traditional, larger laboratory spectrometers are impractical due to their size and power requirements. This innovative Raman spectrometer system incorporates lenses, a diode laser, and a diffraction grating—a compact, square-shaped surface that disperses light for analysis—along with a standard cellphone camera to capture the Raman spectrum. The resulting spectrum’s peaks provide detailed information about the chemical makeup and molecular structure of a substance based on the intensity and location of these peaks.

To operate the device, a cellphone is positioned behind the transmission grating with the camera aligned to capture the Raman spectrum. A laser directs a beam at a sample, such as a bacterium placed on a slide. The cellphone camera records the resulting spectrum. When combined with a dedicated cellphone app/database, this portable device facilitates immediate on-site identification of materials. Previously, such identification required collecting extensive biological samples for laboratory analysis, which could take many hours or days. Unlike traditional Raman spectrometers, which can cost thousands of dollars, this new device is significantly more affordable and can identify materials much more quickly.

“It’s a small device that can tell you the composition of a particular system, material or sample,” said Dr. Peter Rentzepis, a professor in the Department of Electrical and Computer Engineering at Texas A&M University, who holds a patent for the hand-held cellphone-based Raman spectrometer system. “You can even have it in your pocket.”

Related Links:
Texas A&M University Engineering

New
Gold Member
ZIKA Virus Test
ZIKA ELISA IgG
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
New
Carcinoembryonic Antigen Test
CEA Test
New
Male Fertility Rapid Test
SP-10

Print article

Channels

Immunology

view channel
Image: Example image of the high-throughput microscopy method used in the study, showing immune cells stained with different fluorescence markers (Photo courtesy of Felix Kartnig/CeMM, MedUni Vienna)

Cutting-Edge Microscopy Technology Enables Tailored Rheumatology Therapies

Rheumatoid arthritis is the most common inflammatory joint disorder, with women three times as likely to suffer from the condition as men. Treatment advances made over the past decades have led to the... Read more

Microbiology

view channel
Image: RNA sequencing directly from whole blood aims to expand access to LRTI testing (Photo courtesy of CARB-X)

Novel Test to Diagnose Bacterial Pneumonia Directly from Whole Blood

Pneumonia and lower-respiratory-tract infections (LRTIs) are among the top causes of illness and death globally, particularly in vulnerable populations such as the elderly, young children, and immunocompromised... Read more

Pathology

view channel
Image: Lunit SCOPE HER2 is an AI-powered solution designed to detect HER2 expression profile (Photo courtesy of Lunit)

AI-Powered Pathology Solutions Accurately Predict Outcomes for HER2-Targeted Therapy in Metastatic CRC

A new study has highlighted how artificial intelligence (AI)-powered analysis of HER2 and the tumor microenvironment (TME) can improve patient stratification and predict clinical outcomes more effectively.... Read more
Copyright © 2000-2025 Globetech Media. All rights reserved.