We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Nanoscale X-Ray Technique Devised for Imaging of Bacterial Cells

By LabMedica International staff writers
Posted on 19 Jan 2010
Print article
An ultra-high resolution imaging technique using X-ray diffraction is one step closer to fulfilling its potential as a window into nanometer-scale structures in biologic samples.

In research published December 17, 2009, in the online issue of the journal Proceedings of the [U.S.] National Academy of Sciences (PNAS), researchers reported progress in applying an approach to "lensless” X-ray microscopy, which they introduced one year ago. They have produced the first images, using this technique, of biologic cells--specifically the fascinating polyextremophile Deinococcus radiodurans.

Improved ability to see nanoscale structures in cells could provide significant insights for evolutionary biology and biotechnology. In the case of D. radiodurans, for example, it could help to answer questions about whether--or how--the structure of this organism's DNA-bearing nucleoid region accounts for its stamina against ionizing radiation. Having demonstrated the resolution, effectiveness, and reproducibility of their technique, the researchers are now working to extend it to three-dimensional (3D) imaging of biologic cells.

X-ray imaging is best known for its medical applications, such as conventional radiographs and computed tomography (CT) scans. However, the use of X-rays goes far beyond standard imaging. In particular, the very short wavelength of X-ray radiation allows various modes of microscopy that can reach the nanometer resolution. One of the major obstacles to high-resolution X-ray microscopy is the difficulty of producing high-quality X-ray lenses. To overcome these difficulties, so-called lensless microscopy methods have emerged in the last decade. A technique developed by researchers now in the biomedical physics group from the Technische Universitaet Muenchen (TUM; Munich. Germany) has shown great promise for ultra-high resolution imaging of materials and life science samples.

This imaging technique, called ptychography, was first introduced in the 1970s for electron diffraction. It consists in measuring full far-field diffraction patterns as a small illumination is scanned on a sample. While its use in electron microscopy is still limited, ptychography has gained tremendous popularity in the X-ray imaging community in the last few years, due to the development by Franz Pfeiffer, now chair of the biomedical physics group at TUM, and his team. A critical step in the development of ptychography was published by the team one year ago and published in the August 15, 2009, issue of the journal Science. The super-resolution capability of the imaging method was successfully demonstrated with a gold test structure.

Now a collaboration of the Pfeiffer group, together with researchers from the University of Gottingen (Germany) and at the Swiss Light Source (Villigen, Switzerland), has gone a step further and produced the first images of biologic cells with the same technique.

These study findings demonstrated that lensless X-ray imaging, specifically ptychography, could be used to obtain precise maps of the electron density forming a biologic sample. This type of quantitative measurement is extremely difficult with most other high-resolution techniques currently available. Moreover, biologic samples are very fragile and nearly transparent to X-rays, making this type of accurate measurement even more challenging.

The Pfeiffer group is now moving beyond this achievement and looking into ways of additionally improving the technique. In particular, the team is aiming at the next milestone: 3D imaging of biologic samples.

Related Links:

Technische Universitaet Muenchen
University of Gottingen

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Automated Blood Typing System
IH-500 NEXT
New
Progesterone Serum Assay
Progesterone ELISA Kit
New
Quantitative Immunoassay Analyzer
AS050

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.