We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




DNA Synthesis Visualized in Whole Animals

By LabMedica International staff writers
Posted on 03 Jan 2012
Print article
Swiss scientists have discovered a new substance for labeling and visualization of DNA synthesis in vivo in whole animals.

Applications for this technique include identifying the sites of virus infections and cancer growth, due to the profusion of DNA replication in these tissues. This strategy should therefore lead to new applications in drug development.

Interactions of biologic macromolecules are the fundamental bases of living systems. Biologic macromolecules are synthesized in living cells by linking many small molecules together. Naturally occurring macromolecules include genetic materials (DNA) and proteins. A precise determination of the synthesis of these macromolecules in whole animals is a basic prerequisite for better understanding biologic systems, and for the development of new therapeutic strategies.

To visualize the synthesis of biomolecules in living organisms, synthetic small molecules can be added to and integrated by the cell’s own biosynthetic processes. Consequently, the engineered biomolecules containing the synthetic units can be selectively labeled with fluorescent compounds. Until now, this approach had one major drawback: the substances used for labeling were toxic and caused cell death.

Anne Neef, a PhD student from the Institute of Organic Chemistry at the University of Zurich (Switzerland), has devised a new compound that can replace the natural nucleoside thymidine in DNA biosynthesis. This fluorinated nucleoside called F-ara-Edu labels DNA with little or no impact on genome function in living cells and even whole animals. F-ara-Edu is less toxic than previously reported compounds used for DNA labeling and it can be detected with greater sensitivity.

F-ara-Edu is therefore perfectly suited for experiments aimed at “birth dating” DNA synthesis in vivo. “As a demonstration of this, F-ara-Edu was injected into Zebrafish eggs immediately after fertilization. Following development and hatching of the fish, the very first cells undergoing differentiation in embryonic development could be identified,” explained Ms. Neef’s research advisor, Prof. Nathan Luedtke. “By visualizing new DNA synthesis in whole animals, the sites of virus infection and cancerous growth can be identified due to the abundance of DNA replication in these tissues,” added Prof. Luedtke. This strategy should therefore lead to new strategies in drug development.

Related Links:

University of Zurich


Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Technology

view channel
Image: Schematic diagram of nanomaterial-based anti-epileptic drug concentration diagnostic technology (Photo courtesy of KRISS)

Nanomaterial-Based Diagnostic Technology Accurately Monitors Drug Therapy in Epilepsy Patients

Many patients with epilepsy take anti-epileptic drugs to control frequent seizures in their daily lives. To optimize treatment and avoid side effects from overdosing, it is crucial for patients to regularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.