We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Pocket-Sized Invention Revolutionizes Ability to Swiftly Detect Pathogens in Hospital Setting

By LabMedica International staff writers
Posted on 17 Jul 2024
Print article
Image: A smartphone records the Raman spectrum of an unknown material for further analysis (Photo courtesy of Texas A&M University Engineering)
Image: A smartphone records the Raman spectrum of an unknown material for further analysis (Photo courtesy of Texas A&M University Engineering)

Traditionally, the detection of pathogens in a hospital environment could take several days. Now, a new technology combining a cellphone camera with a Raman spectrometer—a sophisticated laser-based chemical analysis tool—enables the rapid detection of drugs, chemicals, and biological molecules that are invisible to the naked eye.

Engineers at Texas A&M University Engineering (College Station, TX, USA) have developed a handheld cellphone-based Raman spectrometer system. This device allows for the non-invasive identification of potentially hazardous chemicals or materials directly in the field, particularly beneficial in remote locations where traditional, larger laboratory spectrometers are impractical due to their size and power requirements. This innovative Raman spectrometer system incorporates lenses, a diode laser, and a diffraction grating—a compact, square-shaped surface that disperses light for analysis—along with a standard cellphone camera to capture the Raman spectrum. The resulting spectrum’s peaks provide detailed information about the chemical makeup and molecular structure of a substance based on the intensity and location of these peaks.

To operate the device, a cellphone is positioned behind the transmission grating with the camera aligned to capture the Raman spectrum. A laser directs a beam at a sample, such as a bacterium placed on a slide. The cellphone camera records the resulting spectrum. When combined with a dedicated cellphone app/database, this portable device facilitates immediate on-site identification of materials. Previously, such identification required collecting extensive biological samples for laboratory analysis, which could take many hours or days. Unlike traditional Raman spectrometers, which can cost thousands of dollars, this new device is significantly more affordable and can identify materials much more quickly.

“It’s a small device that can tell you the composition of a particular system, material or sample,” said Dr. Peter Rentzepis, a professor in the Department of Electrical and Computer Engineering at Texas A&M University, who holds a patent for the hand-held cellphone-based Raman spectrometer system. “You can even have it in your pocket.”

Related Links:
Texas A&M University Engineering

New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Control Material
Blood Culture Identification Control Panel
New
Anti-Rubella IgG (Rubella IgG) Test
Rubella IgG AccuBind ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The Enlighten test detects early-stage cancers by focusing on the body\'s response to tumor development (Photo courtesy of Proteotype Diagnostics)

Multi-Cancer Early Detection Test Measures Host Response to Tumor Development

It is estimated that one in two individuals will receive a cancer diagnosis at some point in their lives. Approximately 70% of cancer fatalities occur from cancers that do not have available screening methods.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Immunology

view channel
Image: Bone marrow affected by multiple myeloma, a disease against which PVR inhibition can increase the efficacy of immunotherapy (Photo courtesy of Cancer Epigenetics Group, IJC)

Epigenetic Test Could Determine Efficacy of New Immunotherapy Treatments Against Multiple Myeloma

Multiple myeloma is a blood cancer that primarily affects individuals over the age of sixty, and its occurrence rises as the population ages. In this disease, the bone marrow—the spongy tissue inside bones... Read more

Microbiology

view channel
Image: New research promises a potential non-invasive stool test and novel therapy for endometriosis (Photo courtesy of Shutterstock)

Non-Invasive Stool Test to Diagnose Endometriosis and Help Reduce Disease Progression

Endometriosis, a painful condition impacting nearly 200 million women globally, occurs when tissue similar to the lining of the uterus grows outside its usual location, such as on the intestines or the... Read more

Pathology

view channel
Image: A glioblastoma tumor cell (green) present in the white matter (blue) near a blood vessel (red), visualized via the novel three-photon microscopy workflow Deep3P (Photo courtesy of EMBL/Heidelberg University)

Pioneering Microscopy Technique Improves Diagnosis of Glioblastoma Brain Tumors

Along the brain’s largest nerve fiber highway, known as the corpus callosum, travel cells that form one of the most lethal brain cancers, glioblastomas. Now, scientists have developed a cellular detector... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.