We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Disposable Microfluidic Device Identifies Aggressive Breast Cancer

By LabMedica International staff writers
Posted on 20 Oct 2010
A disposable device based on advances in microfluidics may help identify advanced breast cancer patients who are candidates for therapy with the drug trastuzumab (Herceptin).

The device is designed to take advantage of the features of an organic silicone found in contact lenses and shampoos called polydimethylsiloxane (PDMS), which is compatible with soft molding techniques, transparent, and permeable to gasses. More...
The device is significantly easier and cheaper to make than the prior microfabricated one.

Scientists at the Ian Wark Research Institute at the University of South Australia (Mawson Lakes, Australia), designed the devise to overcome the lack of chemical reactivity, which is a major challenge associated with PDMS use in biodiagnostic applications. The team used a novel plasma-based polymerization process to surmount that problem. The process creates a durable polymeric layer on the device's surface containing a high number of reactive molecules, which can readily be used to attach proteins able to capture cancer cells, but not normal blood cells.

Aggressive breast cancers with poor prognosis typically have abnormal levels of the tyrosine kinase human epidermal growth factor receptor 2 protein (HER2). The new elastomeric, rubber-like device was designed to capture cancer cells over expressing HER2 in circulating blood efficiently. HER2 positive patients with early breast cancer have been found to benefit significantly from treatment with Herceptin or trastuzumab, the humanized monoclonal antibody against HER2, which can lower recurrence risk by about half.

Benjamin Thierry, Ph.D., senior author of the study, said, "Microfluidic-based devices offer a unique opportunity to efficiently isolate circulating tumor cells from patient's blood, thereby opening a window on the pathophysiology of cancer and its progression. We hope that our device will provide a fast, reliable, and affordable methodology to establish HER2 status for breast cancer patients presenting metastases, thereby enabling the selection of more potent therapy based on trastuzumab.” The study was published in September 2010, in the journal Biomicrofluidics.

Related Links:

University of South Australia




Gold Member
Blood Gas Analyzer
Stat Profile pHOx
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Laboratory Software
ArtelWare
Gold Member
Collection and Transport System
PurSafe Plus®
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.