We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Fast Diagnostic Tool Investigated for Wound Infections

By LabMedica International staff writers
Posted on 29 Aug 2011
Print article
A novel concept for a fast diagnostic tool for wound infection based on enzymes triggered release of dye from a polymeric matrix has been investigated.

For the development of a simple diagnostic tool, a liquid lysozyme assay was adapted to a solid system and the matrix consisted of alginate/agarose and peptidoglycan covalently labeled with Remazol brilliant blue.

Scientists from the Graz University of Technology (Austria) collected wound fluid from 10 postoperative wounds, 8 decubitus ulcer wounds, and 8 blisters and analyzed by biochemical techniques. The detection of wound infection was based on lysozyme and elastase triggered release of the dye from a peptidoglycan matrix. Incubation of 8% labeled agarose/peptidoglycan blend layers with infected wound fluid samples for two hours at 37 °C resulted in a four-fold higher amount of dye released than measured for noninfected wounds. Lysozyme activity in postoperative wounds and decubitus (bed sore) wound fluids was significantly elevated upon infection (4,830 ± 1,848 U/mL), compared to noninfected wounds (376 ± 240 U/mL).

A seven-fold higher amount of dye was released in case of infected wound fluid samples compared to noninfected ones using an alginate/peptidoglycan beads assay. By using Western blotting techniques, proteases including the gelatinase matrix metalloproteinases MMP-2 and MMP-9, and elastase were detected in wound fluids. A slight synergistic effect was measured by dye release for peptidoglycan hydrolysis, between lysozyme and these proteases. Incubation of a double-layer system consisting of stained and nonstained peptidoglycan with infected wound fluids resulted in a color change from yellow to blue, thus allowing simple visual detection of wound infection.

The authors concluded that such a diagnostic tool would allow early intervention with suitable treatment and could reduce clinical intervention and the use of antibiotics. The tool is based on human enzymes, which can be detected in wound fluid samples in a very fast way and which were shown to be elevated in case of infection. The study was published in September 2011, in the journal Diagnostic Microbiology and Infectious Disease.

Related Links:

Graz University of Technology




New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test
New
Liquid Based Cytology Production Machine
LBP-4032

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.