We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Rapid Whole Genome Sequencing Detects Microorganisms from Clinical Samples

By LabMedica International staff writers
Posted on 23 Dec 2013
Print article
Image: The Ion Torrent Personal Genome Machine (PGM) (Photo courtesy of Life Technologies).
Image: The Ion Torrent Personal Genome Machine (PGM) (Photo courtesy of Life Technologies).
A technique known as whole genome sequencing (WGS) has been used to identify and completely characterize bacteria causing urinary tract infections.

Application of this technology will help patients heal more quickly and avoid unnecessarily prolonged illness, help prevent outbreaks of hospital-acquired disease, and identify emerging infections.

Scientists at the Danish Technical University (Lyngby, Denmark) evaluated the applicability of WGS directly on clinical samples and developed easy-to-use bioinformatics tools for analysis of the sequenced data. They examined 35 random urine samples from patients with suspected urinary tract infections using conventional microbiology, WGS of isolated bacteria, and by directly sequencing on pellets from the urine. The 129 isolates were sequenced on the Ion Torrent Personal Genome Machine (PGM) (Life Technologies; Carlsbad, CA, USA).

Complete agreement was observed between species identification, multilocus-sequence typing, and phylogenetic relationship for the Escherichia coli and Enterococcus faecalis isolates when comparing the results of WGS of cultured isolates directly from urine samples. The investigators also identified bacteria in the patient samples that they did not detect using conventional techniques. Lactobacillus iners, Gardnerella vaginalis, Prevotella, and Aerococcus urinae have all been implicated in urinary tract infections, even though their precise roles as pathogens and normal colonizers of the genital tract have not been firmly established. They noted that by conventional methods A. urinae is rarely identified but frequently misclassified.

Sequencing directly from the urine enabled bacterial identification in polymicrobic samples and additional putative pathogenic strains were observed in some culture negative samples. This technique allowed the scientists in just 18 hours, to identify the microorganisms, characterized the pathogens' patterns of antibiotic susceptibility, and identified specific strains.

Frank M. Aarestrup, DVM, PhD, the senior author of the study said, “Using conventional methodologies this would have taken several days to weeks, and even using whole genome sequencing on cultured bacteria would have taken an extra day. Rapid identification of the causative agent and of any antibiotic resistance is crucial to choosing the correct treatment for individual patients. Choosing the wrong antibiotic will lead to longer infections and in the worst case, deaths.” The study was published online on October 10, 2013, in the Journal of Clinical Microbiology.

Related Links:

Danish Technical University
Life Technologies 


New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Automated Blood Typing System
IH-500 NEXT
New
Histamine ELISA
Histamine ELISA
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.