We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Rapid Whole Genome Sequencing Detects Microorganisms from Clinical Samples

By LabMedica International staff writers
Posted on 23 Dec 2013
Print article
Image: The Ion Torrent Personal Genome Machine (PGM) (Photo courtesy of Life Technologies).
Image: The Ion Torrent Personal Genome Machine (PGM) (Photo courtesy of Life Technologies).
A technique known as whole genome sequencing (WGS) has been used to identify and completely characterize bacteria causing urinary tract infections.

Application of this technology will help patients heal more quickly and avoid unnecessarily prolonged illness, help prevent outbreaks of hospital-acquired disease, and identify emerging infections.

Scientists at the Danish Technical University (Lyngby, Denmark) evaluated the applicability of WGS directly on clinical samples and developed easy-to-use bioinformatics tools for analysis of the sequenced data. They examined 35 random urine samples from patients with suspected urinary tract infections using conventional microbiology, WGS of isolated bacteria, and by directly sequencing on pellets from the urine. The 129 isolates were sequenced on the Ion Torrent Personal Genome Machine (PGM) (Life Technologies; Carlsbad, CA, USA).

Complete agreement was observed between species identification, multilocus-sequence typing, and phylogenetic relationship for the Escherichia coli and Enterococcus faecalis isolates when comparing the results of WGS of cultured isolates directly from urine samples. The investigators also identified bacteria in the patient samples that they did not detect using conventional techniques. Lactobacillus iners, Gardnerella vaginalis, Prevotella, and Aerococcus urinae have all been implicated in urinary tract infections, even though their precise roles as pathogens and normal colonizers of the genital tract have not been firmly established. They noted that by conventional methods A. urinae is rarely identified but frequently misclassified.

Sequencing directly from the urine enabled bacterial identification in polymicrobic samples and additional putative pathogenic strains were observed in some culture negative samples. This technique allowed the scientists in just 18 hours, to identify the microorganisms, characterized the pathogens' patterns of antibiotic susceptibility, and identified specific strains.

Frank M. Aarestrup, DVM, PhD, the senior author of the study said, “Using conventional methodologies this would have taken several days to weeks, and even using whole genome sequencing on cultured bacteria would have taken an extra day. Rapid identification of the causative agent and of any antibiotic resistance is crucial to choosing the correct treatment for individual patients. Choosing the wrong antibiotic will lead to longer infections and in the worst case, deaths.” The study was published online on October 10, 2013, in the Journal of Clinical Microbiology.

Related Links:

Danish Technical University
Life Technologies 


New
Gold Member
Troponin T QC
Troponin T Quality Control
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Respiratory Syncytial Virus Test
QuickVue RSV Test
New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: A scanning electron microscope image of chiral gold nanoparticles developed for a new microfluidic chip (Matter, 2024; DOI: 10.1016/j.matt.2024.09.005)

Simple Blood Draw Helps Diagnose Lung Cancer 10 Times Faster

Once dismissed as cellular waste, exosomes—tiny vesicles released by cells containing proteins, DNA, or RNA fragments—have emerged as vital players in cell-to-cell communication over the past decade.... Read more

Hematology

view channel
Image: The discovery of a new blood group has solved a 50- year-old mystery (Photo courtesy of 123RF)

Newly Discovered Blood Group System to Help Identify and Treat Rare Patients

The AnWj blood group antigen, a surface marker discovered in 1972, has remained a mystery regarding its genetic origin—until now. The most common cause of being AnWj-negative is linked to hematological... Read more

Pathology

view channel
Image: Confocal- & laminar flow-based detection scheme of intact virus particles, one at a time (Photo courtesy of Paz Drori)

Breakthrough Virus Detection Technology Combines Confocal Fluorescence Microscopy with Microfluidic Laminar Flow

Current virus detection often relies on polymerase chain reaction (PCR), which, while highly accurate, can be slow, labor-intensive, and requires specialized lab equipment. Antigen-based tests provide... Read more

Industry

view channel
Image: The GeneXpert system’s fast PCR Xpert tests can fight AMR and superbugs with fast and accurate PCR in one hour (Photo courtesy of Cepheid)

Cepheid Partners with Fleming Initiative to Fight Antimicrobial Resistance

Antimicrobial resistance (AMR) is responsible for over one million deaths globally each year and poses a growing challenge in treating major infectious diseases like tuberculosis, Escherichia coli (E.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.