We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Biomarker Panel Differentiates Active and Latent Tuberculosis Infections

By LabMedica International staff writers
Posted on 12 Apr 2015
Print article
Image: Photomicrograph of Mycobacterium tuberculosis bacteria magnified 1,000 times and colored with acid-fast Ziehl-Neelsen stain Photo courtesy of Emory University).
Image: Photomicrograph of Mycobacterium tuberculosis bacteria magnified 1,000 times and colored with acid-fast Ziehl-Neelsen stain Photo courtesy of Emory University).
A set of biomarkers detectable in the blood accurately identifies individuals with active tuberculosis (ATB) and differentiates them from patients with latent Mycobacterium tuberculosis infection (LTBI) and from recovered TB patients.

The identification and treatment of individuals with tuberculosis (TB) is a global public health priority. Accurate diagnosis of ATB remains challenging and relies on extensive medical evaluation and detection of M. tuberculosis (Mtb) in the patient’s sputum. Furthermore, the response to treatment is monitored by sputum culture conversion, which takes several weeks for results.

In an effort to modernize detection of patients with ATB, investigators at Emory University (Atlanta, Georgia, USA) used polychromatic flow cytometry to evaluate the expression of immune activation markers on Mtb-specific CD4+ T-cells from individuals with asymptomatic latent Mtb infection (LTBI) and ATB as well as from ATB patients undergoing anti-TB treatment.

For this study the investigators enrolled individuals from the Atlanta, GA, USA area with asymptomatic LTBI, with untreated ATB, and patients undergoing treatment for ATB. In addition, the biomarkers identified were applied for evaluation of individuals with ATB and LTBI recruited from the Western Cape in South Africa.

Results revealed that frequencies of Mtb-specific IFN (interferon)-gamma+CD4+ T-cells that expressed immune activation markers CD38 and HLA-DR as well as intracellular proliferation marker Ki-67 were substantially higher in subjects with ATB compared with those with LTBI. These markers accurately classified ATB and LTBI status, with cutoff values of 18%, 60%, and 5% for CD38+IFN-gamma+, HLA-DR+IFN-gamma+, and Ki-67+IFN-gamma+, respectively, with 100% specificity and greater than 96% sensitivity. These markers also distinguished individuals with untreated ATB from those who had successfully completed anti-TB treatment and correlated with decreasing mycobacterial loads during treatment.

"In this study, we have identified T-cell biomarkers that accurately identify ATB patients. These biomarkers have the potential to lead to new blood-based diagnostics for TB as well as provide a set of tools for monitoring treatment response and cure," said senior author Dr. Jyothi Rengarajan, assistant professor of medicine at Emory University. "Blood-based biomarkers will be particularly useful in situations where sputum-based diagnosis of TB is more difficult. Because these biomarkers provide a gauge of Mtb load within individuals, they could also have utility as surrogate markers of treatment response and as predictors of treatment efficacy, cure, and relapse in patients undergoing treatment for drug-susceptible as well as drug-resistant TB.

The study was published in the March 30, 2015, online edition of the Journal of Clinical Investigation.

Related Links:
Emory University


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Chemistry Analyzer
MS100
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.