We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Chemical Sensor Rapidly Detects Fungal Infections

By LabMedica International staff writers
Posted on 19 May 2016
Print article
Image: Candida albicans growing on Sabouraud agar (Photo courtesy of Dr. William Kaplan / CDC).
Image: Candida albicans growing on Sabouraud agar (Photo courtesy of Dr. William Kaplan / CDC).
An elevated concentration of D-arabitol, a simple sugar alcohol, in urine, especially compared to that of L-arabitol or creatinine, is indicative of a fungal infection, which can become deadly.

In healthy humans these forms, known as D-arabitol and L-arabitol, are formed in roughly the same amounts; however, cells of Candida species produce only D-arabitol. The relative increase in the concentration of this enantiomer in body fluids can therefore herald infection.

Scientists at the Institute of Physical Chemistry of the Polish Academy of Sciences (Warsaw, Poland) devised, fabricated, and tested chemical sensors determining D-arabitol. These chemosensors comprised the quartz crystal resonator (QCR) or extended-gate field-effect transistor (EG-FET) transducers integrated with molecularly imprinted polymer (MIP) film recognition units.

The polymer film with molecular cavities binding D-arabitol was prepared using the molecular imprinting technique. The process began by dissolving D-arabitol in acetonitrile. Then boric acid labeled with bithiophene, whose molecules bound to the D-arabitol in particular positions, was added to the solution. The bithiophene substituent permitted the electrochemical polymerization of the solution. A polymer film having a rigid structure was thus created, from which all that was needed was to rinse out the D-arabitol molecules to obtain a film with molecular cavities of the desired shape and properties.

The detection polymer films produced a thickness of about 200 nanometers. They are deposited either on gold electrodes, or on quartz resonators. After immersing a sample taken from a patient in the solution, D-arabitol particles get stuck in the molecular cavities of the films and depending on the method of detection, either change the flow of current through a field-effect transistor having a gate connected to an electrode or the oscillation resonance frequency of a piezoelectric resonator. The chemical sensor enabled the detection time of fungi to be shortened from the current couple of days to just a few minutes.

With the QCR and EG-FET chemosensors, the D-arabitol concentration was determined under flow-injection analysis and stagnant-solution binding conditions, respectively. Selectivity with respect to common interferences, and L-arabitol in particular, of the devised chemosensors was superior. Limits of detection and linear dynamic concentration ranges of the QCR and EG-FET chemosensors were 150 µM and 150µM to 1.25 mM as well as and 120 µM to 1.00 mM, respectively, being lower than the d-arabitol concentrations in urine of patients with invasive candidiasis, which was greater than 220 μM. The authors concluded that the devised chemosensors are suitable for early diagnosis of fungal infections caused by Candida sp. yeasts. The study was published in the May 2016 issue of the journal Biosensors and Bioelectronics.

Related Links:
Institute of Physical Chemistry of the Polish Academy of Sciences


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Rocking Shaker
HumaRock
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.