We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Predicting Cancer Relapse Improved by High-Throughput DNA Sequencing

By LabMedica International staff writers
Posted on 14 Jun 2012
Print article
Researchers have shown that high-throughput sequencing (HTS) detects the earliest known signs of potential cancer relapse faster and in nearly twice the number of leukemia patients as flow cytometry, the current gold standard for detecting minimal residual disease (MRD).

Specifically, the emerging technology using HTS of lymphoid receptor genes was applied to the diagnosis of T-lineage acute lymphoblastic leukemia/lymphoma. The collaborative study, led by scientists at the Fred Hutchinson Cancer Research Center (Hutchinson Center; Seattle, WA, USA), compared the effectiveness of the two methods to detect MRD, a major predictor of cancer relapse, in 43 patients diagnosed with acute T lymphoblastic leukemia, which is most common in children under age 7.

The results showed that by sequencing patient T-cell receptor genes before and 29 days after chemotherapy, their presence in the blood could be measured precisely and provided a more accurate prediction of leukemia relapse. HTS detected MRD in 22 patients, whereas MRD was detected in only 12 patients by flow cytometry, currently the primary method for detecting MRD in the United States.

These and additional results of this study, which represents the first use of HTS to detect MRD in a clinical trial setting, found HTS to be at least 20 times more sensitive than flow cytometry in detecting MRD.

“Our research indicates that HTS offers many advantages over flow cytometry,” said Harlan Robins, PhD, associate member of the Hutchinson center. “Since HTS can detect any preidentified clone and is performed in a centralized lab, it consistently generates reproducible and reliable results regardless of cancer type, using the same process for disease detection and tracking. Furthermore, HTS is highly automated, cost-effective, and objective, whereas flow cytometry is more time consuming, relies on the skill of the operator, and is therefore subject to human error,” explained Robins.

“The ability to predict disease relapse sooner with high-throughput sequencing would give hematologists the option to treat cancer recurrence earlier, offering a greater chance of survival. Longer term, this technology potentially also could be used to initially diagnose leukemia and lymphoma much earlier than we can today,” added Dr. Robbins.

Dr. Robins and colleagues had adapted traditional high-throughput technology to specifically sequence only variable regions of T- and B-cell receptor genes. The Hutchinson Center has patents pending on core technologies, licensed exclusively to Adaptive Biotechnologies (Seattle, WA, USA), that were employed in conjunction with HTS used for this study.

The results of the study were reported in the May 16, 2012, issue of the journal Science Translational Medicine.

Related Links:

Fred Hutchinson Cancer Research Center
Adaptive Biotechnologies
University of Washington

Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Hepatitis B Virus Test
HBs Ab – ELISA
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.