We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Gene Signature Identified for Juvenile Arthritis

By LabMedica International staff writers
Posted on 07 Nov 2012
Print article
The genes that are expressed in patients with systemic juvenile idiopathic arthritis (SJIA) have been compared with those with the more common polyarticular juvenile idiopathic arthritis (POLY).

The distinct pathways involved in the arthritis of early and established SJIA raise the possibility that the immune system alters its behavior over the course of this disease and this can be investigated by finding which genes are involved in increased erythrocyte sedimentation rate (ESR).

In a collaboration between the Stanford University School of Medicine (CA, USA) and Celera Corporation (Alameda, CA, USA), scientists looked at the genes switched on in the blood of children with either SJIA or POLY. Ribonucleic acid (RNA) from peripheral blood mononuclear cells (PBMC) of children with each disease was profiled by kinetic polymerase chain reaction (PCR) to analyze expression of 181 genes, selected for relevance to immune response pathways.

The team found 91 ESR-related and 92 joint count (JC)-related genes in SJIA, and for POLY, 20 ESR-related and zero JC-related genes were found. These genes were grouped into biological pathways such as interleukin (IL)-signaling, cluster of differentiation 40 (CD40)-signaling, or communication between immune cells. Therefore, it became apparent that in SJIA, these pathways were involved in elevated ESR, which is used as a marker for disease flare-up, and also linked to joint arthritis.

Elizabeth D. Mellins, MD, the senior author, said, "In our study we identified molecular pathways involved in both the systemic and arthritic components of SJIA. We discovered that the set of pathways involved in SJIA inflammation were different from those in POLY, perhaps explaining the differences in affected organs. This was especially true for the genes involved in increased ESR. For example, glucocorticoid signaling was more heavily involved in inflammation associated with SJIA than POLY, which may explain why nonglucocorticoid treatment is less effective for children with SJIA."

The authors concluded that even within the SJIA group different pathways were involved in different stages of the disease and knowledge like this should help refine treatment plans for these children and help to control their disease. The study was published on October 23, 2012, in the journal BMC Medicine.

Related Links:
Stanford University School of Medicine
Celera Corporation

Gold Member
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
Automated Blood Typing System
IH-500 NEXT
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab
New
Automatic Biochemistry Analyzer
Audmax 180 Evolution

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.