We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Novel Nanosponge Vaccine Protects Mice from MRSA Toxin

By LabMedica International staff writers
Posted on 10 Dec 2013
Print article
Image: The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse immune system dendritic cell. The detained alpha-hemolysin toxins were labeled with a fluorescent dye, which glows yellow. The cell membrane was stained red and the nuclei stained blue (Photo courtesy of the University of California, San Diego,  Department of NanoEngineering).
Image: The glowing yellow specks in the image show uptake of the nanosponge vaccine by a mouse immune system dendritic cell. The detained alpha-hemolysin toxins were labeled with a fluorescent dye, which glows yellow. The cell membrane was stained red and the nuclei stained blue (Photo courtesy of the University of California, San Diego, Department of NanoEngineering).
Image: The nanosponges at the foundation of the experimental “toxoid vaccine” platform are biocompatible particles made of a polymer core (light-blue-green color) wrapped in a red-blood-cell membrane (orange). Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus alpha-hemolysin toxin (blue) without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice (Photo courtesy of the University of California, San Diego,  Department of NanoEngineering).
Image: The nanosponges at the foundation of the experimental “toxoid vaccine” platform are biocompatible particles made of a polymer core (light-blue-green color) wrapped in a red-blood-cell membrane (orange). Each nanosponge's red-blood-cell membrane seizes and detains the Staphylococcus aureus alpha-hemolysin toxin (blue) without compromising the toxin’s structural integrity through heating or chemical processing. These toxin-studded nanosponges served as vaccines capable of triggering neutralizing antibodies and fighting off otherwise lethal doses of the toxin in mice (Photo courtesy of the University of California, San Diego, Department of NanoEngineering).
A novel vaccine based on "nanosponges" that sequester toxic, pore-forming toxoids—such as that produced by MRSA (methicylin resistant Staphylococcus aureus)—permits presentation of these toxins to immune system defensive cells without danger of damaging them.

It is not possible to deliver a native pore-forming toxin to immune cells without damaging the cells. However, the heating or chemical processing required to neutralize the toxin can compromise the toxin's structural integrity and reduce the value of the vaccine.

To get around this problem, investigators at the University of California, San Diego (USA) developed "nanosponges.” These are biocompatible particles made of a polymer core wrapped in a red blood cell membrane. The red blood cell coating allows the nanosponge to incorporate and hold I alpha-hemolysin toxin without compromising the toxin’s structural integrity through heating or chemical processing. Despite being intact structurally, the trapped toxoid is rendered incapable of damaging other cells.

A paper published in the December 1, 2013, online edition of the journal Nature Nanotechnology presented results from experiments in which nanosponges loaded with toxoid were used to protect mice from MRSA infection. After one injection of the vaccine, 50% of the nanosponge-treated animals survived as compared to fewer than 10% of mice that had been vaccinated with heat-inactivated toxoid. An additional two booster shots increased the survival rate for the nanosponge-vaccinated animals to 100% compared to 90% for those vaccinated with the heat-treated toxin.

"The more you heat it, the safer the toxin is, but the more you heat it, the more you damage the structure of the protein," said senior author Dr. Liangfang Zhang, professor of nanoengineering at the University of California, San Diego. "And this structure is what the immune cell recognizes, and builds its antibodies against. Before this there was no way you could deliver a native toxin to the immune cells without damaging the cells, but this technology allows us to do this."

"The nanosponge vaccine was also able to completely prevent the toxin's damages in the skin, where MRSA infections frequently take place," said Dr. Zhang. "The particles work so beautifully that it might be possible to detain several toxins at once on them, creating one vaccine against many types of pore-forming toxins, from Staphylococcus to snake venom."

Related Links:

University of California, San Diego


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Automated Blood Typing System
IH-500 NEXT
New
PSA Test
Human Semen Rapid Test
New
Anti-Secukinumab ELISA
LISA-TRACKER anti-Secukinumab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.