Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us

Download Mobile App




Targeted Nanoparticles Deliver Oral Insulin in Mouse Model

By LabMedica International staff writers
Posted on 12 Dec 2013
A paper described the preparation of a novel class of nanoparticles capable of crossing the intestinal barrier and delivering clinically relevant amounts of drugs such as insulin.

Adoption of nanoparticle therapeutic agents has been slow, partly due to the necessity for delivering these drugs by injection. More...
Oral administration of nanoparticles is preferred but it has remained a challenge, since transport across the intestinal epithelium is limited.

Investigators at Harvard Medical School (Boston, MA, USA) and the Massachusetts Institute of Technology (Cambridge, USA) created a novel class of nanoparticles coated with antibodies specific for the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers.

Their results presented in the November 27, 2013, online edition of the journal Science Translational Medicine showed that these nanoparticles were efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7% per hour compared with only 1.2% per hour for nontargeted nanoparticles.

Targeted nanoparticles containing insulin, as model nanoparticle-based therapy for diabetes, were orally administered at a clinically relevant insulin dose and it elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in mice that had been genetically engineered to lack the FcRn gene, indicating that the enhanced nanoparticle transport was specifically due to FcRn.

"The novelty of actively being able to transport targeted nanoparticles across cell barriers can potentially open up a whole new set of opportunities in nanomedicine," said senior author Dr. Omid Farokhzad, professor of nanomedicine and biomaterials at Harvard Medical School. "The body has receptors that are involved in shuttling proteins across barriers, as is the case in the placenta between the mother and fetus, or in the intestine, or between the blood and the brain. By hitching a ride from these transporters, the nanoparticles can enter various impermeable tissues. If you can penetrate the mucosa in the intestine, maybe next you can penetrate the mucosa in the lungs, maybe the blood-brain barrier, maybe the placental barrier."

Related Links:

Harvard Medical School
Massachusetts Institute of Technology



Gold Member
Quality Control Material
iPLEX Pro Exome QC Panel
POC Helicobacter Pylori Test Kit
Hepy Urease Test
Automatic CLIA Analyzer
Shine i9000
Automatic Hematology Analyzer
DH-800 Series
Read the full article by registering today, it's FREE! It's Free!
Register now for FREE to LabMedica.com and get access to news and events that shape the world of Clinical Laboratory Medicine.
  • Free digital version edition of LabMedica International sent by email on regular basis
  • Free print version of LabMedica International magazine (available only outside USA and Canada).
  • Free and unlimited access to back issues of LabMedica International in digital format
  • Free LabMedica International Newsletter sent every week containing the latest news
  • Free breaking news sent via email
  • Free access to Events Calendar
  • Free access to LinkXpress new product services
  • REGISTRATION IS FREE AND EASY!
Click here to Register








Channels

Molecular Diagnostics

view channel
Image: The diagnostic device can tell how deadly brain tumors respond to treatment from a simple blood test (Photo courtesy of UQ)

Diagnostic Device Predicts Treatment Response for Brain Tumors Via Blood Test

Glioblastoma is one of the deadliest forms of brain cancer, largely because doctors have no reliable way to determine whether treatments are working in real time. Assessing therapeutic response currently... Read more

Immunology

view channel
Image: Circulating tumor cells isolated from blood samples could help guide immunotherapy decisions (Photo courtesy of Shutterstock)

Blood Test Identifies Lung Cancer Patients Who Can Benefit from Immunotherapy Drug

Small cell lung cancer (SCLC) is an aggressive disease with limited treatment options, and even newly approved immunotherapies do not benefit all patients. While immunotherapy can extend survival for some,... Read more

Microbiology

view channel
Image: New evidence suggests that imbalances in the gut microbiome may contribute to the onset and progression of MCI and Alzheimer’s disease (Photo courtesy of Adobe Stock)

Comprehensive Review Identifies Gut Microbiome Signatures Associated With Alzheimer’s Disease

Alzheimer’s disease affects approximately 6.7 million people in the United States and nearly 50 million worldwide, yet early cognitive decline remains difficult to characterize. Increasing evidence suggests... Read more

Technology

view channel
Image: Vitestro has shared a detailed visual explanation of its Autonomous Robotic Phlebotomy Device (photo courtesy of Vitestro)

Robotic Technology Unveiled for Automated Diagnostic Blood Draws

Routine diagnostic blood collection is a high‑volume task that can strain staffing and introduce human‑dependent variability, with downstream implications for sample quality and patient experience.... Read more

Industry

view channel
Image: Roche’s cobas® Mass Spec solution enables fully automated mass spectrometry in routine clinical laboratories (Photo courtesy of Roche)

New Collaboration Brings Automated Mass Spectrometry to Routine Laboratory Testing

Mass spectrometry is a powerful analytical technique that identifies and quantifies molecules based on their mass and electrical charge. Its high selectivity, sensitivity, and accuracy make it indispensable... Read more
Copyright © 2000-2026 Globetech Media. All rights reserved.