We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Targeted Nanoparticles Deliver Oral Insulin in Mouse Model

By LabMedica International staff writers
Posted on 12 Dec 2013
Print article
A paper described the preparation of a novel class of nanoparticles capable of crossing the intestinal barrier and delivering clinically relevant amounts of drugs such as insulin.

Adoption of nanoparticle therapeutic agents has been slow, partly due to the necessity for delivering these drugs by injection. Oral administration of nanoparticles is preferred but it has remained a challenge, since transport across the intestinal epithelium is limited.

Investigators at Harvard Medical School (Boston, MA, USA) and the Massachusetts Institute of Technology (Cambridge, USA) created a novel class of nanoparticles coated with antibodies specific for the neonatal Fc receptor (FcRn), which mediates the transport of immunoglobulin G antibodies across epithelial barriers.

Their results presented in the November 27, 2013, online edition of the journal Science Translational Medicine showed that these nanoparticles were efficiently transported across the intestinal epithelium using both in vitro and in vivo models. In mice, orally administered FcRn-targeted nanoparticles crossed the intestinal epithelium and reached systemic circulation with a mean absorption efficiency of 13.7% per hour compared with only 1.2% per hour for nontargeted nanoparticles.

Targeted nanoparticles containing insulin, as model nanoparticle-based therapy for diabetes, were orally administered at a clinically relevant insulin dose and it elicited a prolonged hypoglycemic response in wild-type mice. This effect was abolished in mice that had been genetically engineered to lack the FcRn gene, indicating that the enhanced nanoparticle transport was specifically due to FcRn.

"The novelty of actively being able to transport targeted nanoparticles across cell barriers can potentially open up a whole new set of opportunities in nanomedicine," said senior author Dr. Omid Farokhzad, professor of nanomedicine and biomaterials at Harvard Medical School. "The body has receptors that are involved in shuttling proteins across barriers, as is the case in the placenta between the mother and fetus, or in the intestine, or between the blood and the brain. By hitching a ride from these transporters, the nanoparticles can enter various impermeable tissues. If you can penetrate the mucosa in the intestine, maybe next you can penetrate the mucosa in the lungs, maybe the blood-brain barrier, maybe the placental barrier."

Related Links:

Harvard Medical School
Massachusetts Institute of Technology


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay
New
Nuclear Matrix Protein 22 Test
NMP22 Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.