We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Retinoic Acid Prevents Precancerous Breast Cells from Progressing to Full-Blown Cancer

By LabMedica International staff writers
Posted on 20 Apr 2014
Print article
Retinoic acid, a derivative of vitamin A, was found to prevent pre-cancerous breast cells from progressing to full-blown cancer but did not have any effect on breast tumor cells.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) worked with a novel breast cancer model that had been developed by treating MCF-10F human normal breast epithelial cells with a high dose of estradiol. The model system consisted of four distinct cell lines which demonstrated a progressive neoplastic transformation: MCF-10F, normal stage; trMCF, transformed MCF-10F; bsMCF, invasive stage; and caMCF, tumorigenic stage. In three-dimensional cultures, MCF-10F cells formed tubules resembling the structures in the normal mammary gland. After treatment with estradiol, these cells formed tubules and spherical masses which were indicative of transformation.

In the current study the investigators evaluated the effect of all trans-retinoic acid (ATRA) at different stages of neoplastic transformation. Retinoids have been used as potential chemotherapeutic or chemopreventive agents because of their differentiative, antiproliferative, proapoptotic, and antioxidant properties.

Cells that only formed spherical masses in collagen were isolated (trMCF clone 11) and treated with ATRA. After treatment with a concentration of one micromolar ATRA, the trMCF clone 11 cells showed tubules in collagen. Gene expression studies showed that 207 genes upregulated in transformed trMCF clone 11 cells were downregulated after one micromolar ATRA treatment to levels comparable to those found in the normal breast epithelial cells MCF-10F. Furthermore, 236 genes that were downregulated in trMCF clone 11 were upregulated after one micromolar ATRA treatment to similar levels shown in normal epithelial cells. These 443 genes defined a signature of the ATRA reprogramming effect.

Results published in the March 21, 2014, edition of the International Journal of Oncology showed that one micromolar ATRA was able to re-differentiate transformed cells at early stages of the neoplastic process and antagonistically regulate breast cancer associated genes. On the other hand, the invasive and tumorigenic cells did not show any changes in morphology after ATRA treatment.

“It looks like retinoic acid exerts effects on cancer cells in part via the modulation of the epigenome,” said senior author Dr. Sandra V. Fernandez, assistant research professor of medical oncology at Thomas Jefferson University. “We were able to see this effect of retinoic acid because we were looking at four distinct stages of breast cancer. It will be interesting to see if these results can be applied to patients.”

Related Links:

Thomas Jefferson University


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.