We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Retinoic Acid Prevents Precancerous Breast Cells from Progressing to Full-Blown Cancer

By LabMedica International staff writers
Posted on 20 Apr 2014
Print article
Retinoic acid, a derivative of vitamin A, was found to prevent pre-cancerous breast cells from progressing to full-blown cancer but did not have any effect on breast tumor cells.

Investigators at Thomas Jefferson University (Philadelphia, PA, USA) worked with a novel breast cancer model that had been developed by treating MCF-10F human normal breast epithelial cells with a high dose of estradiol. The model system consisted of four distinct cell lines which demonstrated a progressive neoplastic transformation: MCF-10F, normal stage; trMCF, transformed MCF-10F; bsMCF, invasive stage; and caMCF, tumorigenic stage. In three-dimensional cultures, MCF-10F cells formed tubules resembling the structures in the normal mammary gland. After treatment with estradiol, these cells formed tubules and spherical masses which were indicative of transformation.

In the current study the investigators evaluated the effect of all trans-retinoic acid (ATRA) at different stages of neoplastic transformation. Retinoids have been used as potential chemotherapeutic or chemopreventive agents because of their differentiative, antiproliferative, proapoptotic, and antioxidant properties.

Cells that only formed spherical masses in collagen were isolated (trMCF clone 11) and treated with ATRA. After treatment with a concentration of one micromolar ATRA, the trMCF clone 11 cells showed tubules in collagen. Gene expression studies showed that 207 genes upregulated in transformed trMCF clone 11 cells were downregulated after one micromolar ATRA treatment to levels comparable to those found in the normal breast epithelial cells MCF-10F. Furthermore, 236 genes that were downregulated in trMCF clone 11 were upregulated after one micromolar ATRA treatment to similar levels shown in normal epithelial cells. These 443 genes defined a signature of the ATRA reprogramming effect.

Results published in the March 21, 2014, edition of the International Journal of Oncology showed that one micromolar ATRA was able to re-differentiate transformed cells at early stages of the neoplastic process and antagonistically regulate breast cancer associated genes. On the other hand, the invasive and tumorigenic cells did not show any changes in morphology after ATRA treatment.

“It looks like retinoic acid exerts effects on cancer cells in part via the modulation of the epigenome,” said senior author Dr. Sandra V. Fernandez, assistant research professor of medical oncology at Thomas Jefferson University. “We were able to see this effect of retinoic acid because we were looking at four distinct stages of breast cancer. It will be interesting to see if these results can be applied to patients.”

Related Links:

Thomas Jefferson University


New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Automated Nucleic Acid Extractor
eLab
New
Thyroid ELISA Kit
AESKULISA a-TPO

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Genome sequencing technology has the potential to detect thousands of genetic disease (Photo courtesy of 123RF)

Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.