We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




New Approach Restores Effectiveness of Older Antibiotics

By LabMedica International staff writers
Posted on 29 Apr 2014
Print article
Image: Cultured bacteria showing increased sensitivity to antibiotics with the additional of a metallopolymer (Photo courtesy of University of South Carolina).
Image: Cultured bacteria showing increased sensitivity to antibiotics with the additional of a metallopolymer (Photo courtesy of University of South Carolina).
Methicillin-resistant Staphylococcus aureus (MRSA), a complex of multidrug-resistant Gram-positive bacterial strains, has proven especially problematic in both hospital and community settings.

These bacteria have become drug resistant by deactivating conventional β-lactam antibiotics, including penicillins, cephalosporins, and carbapenems.

Microbiologists at the University of South Carolina (Columbia, SC, USA) introduced a class of charged metallopolymers that exhibit synergistic effects against MRSA by efficiently inhibiting activity of β-lactamase and effectively lysing bacterial cells.

The β-lactam structure in a molecule is something that many bacteria are adverse to. It greatly hinders their ability to reproduce by cell division, and so chemists have for years spent time making molecules that all contain the β-lactam structural motif. One of the most effective bacterial defenses is an enzyme called β-lactamase, which chews up the β-lactam structure. Some bacteria, such as MRSA, have developed the ability to biosynthesize and release β-lactamase when needed. It is a devastating defense because it is so general, targeting the common structural motif in all of the many β-lactam antibiotics.

The interdisciplinary team also showed that the antimicrobial effectiveness of the four β-lactams studied in detail was enhanced by the polymer. They prepared a cobaltocenium metallopolymer that greatly slowed the destructiveness of β-lactamase on a model β-lactam molecule (nitrocefin). The enhancement was modest against two strains, but very pronounced with the hospital-associated strain of MRSA (HA-MRSA). The four antibiotics penicillin-G, amoxicillin, ampicillin, and cefazolin, were protected from β-lactamase hydrolysis via the formation of unique ion-pairs between their carboxylate anions and cationic cobaltocenium moieties.

The study was published on March 17, 2014, in the Journal of the American Chemical Society.

Related Links:

University of South Carolina


New
Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Chlamydia Test Kit
CHLAMYTOP
New
Hepato Fibrosis Assays
Hepato Fibrosis Assays

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Genome sequencing technology has the potential to detect thousands of genetic disease (Photo courtesy of 123RF)

Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.