We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Switch to CAD Technology Greatly Improves Lab-On-A-Chip Capability

By LabMedica International staff writers
Posted on 12 May 2014
Print article
The lab-on-a-chip holds potential for reducing cost of medical diagnostics while expanding access to health care. Now scientists have developed computer aided design (CAD) software to enable far more than one or two tests on a single chip.

In the near future healthcare professionals may be able to routinely run clinical lab tests almost instantly on a digital microfluidic machine about the size of credit card. These lab-on-a-chips (LOCs) would not only be quick—results available in minutes—but also inexpensive and portable. They could be used at point-of-care, and even at long distance from the nearest medical clinic.

But as powerful as they may be, they could be far better, said Shiyan Hu, associate professor of electrical and computer engineering at Michigan Technological University (MTU; Houghton, MI, USA). Current LOCs can generally run no more than a test or two because the chips are designed manually. If the LOCs were made using computer-aided design (CAD), you could run dozens of tests with, for example, a single drop of blood. “In a very short time, you could test for many conditions,” said Prof. Hu; “This really would be an entire lab on a chip.” With PhD student Chen Liao, Prof. Hu has taken the first step. “We have developed software to design the hardware,” he said.

Their work, described in, and featured on the cover of, the March, 2014, edition of the journal IEEE Transactions on Nanobiosciences, focuses on routing a droplet of blood or other fluid through each test on the chip efficiently while avoiding contamination. A key part in LOC CAD is physical-level synthesis. It includes the LOC placement and routing, where placement is to determine the physical location and the starting time of each operation, and routing is to transport each droplet from the source to the destination.

“It has taken us four years to do the software, but to manufacture the LOC would be inexpensive,” said Prof. Hu; “The materials are very cheap, and the results are more accurate than a conventional lab’s.” Prof. Hu plans to fabricate their own biochip using their software.

Related Links:

Michigan Technological University


Gold Member
Troponin T QC
Troponin T Quality Control
Unit-Dose Packaging solution
HLX
New
Silver Member
Rubella Infection ELISA
ReQuest RUBELLA IgM ELISA Kit
New
Automated Nucleic Acid Extractor
eLab

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Genome sequencing technology has the potential to detect thousands of genetic disease (Photo courtesy of 123RF)

Gene Technology Outperforms Standard Newborn Screening Tests in Pioneering Study

Since its introduction in the 1960s, newborn screening has grown to encompass dozens of primarily genetic disorders. The standard approach to newborn screening involves detecting specific biomarkers in... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image: LMU’s Professor Frederick Klauschen developed the novel approach that can improve diagnostic accuracy (Photo courtesy of LMU Munich)

AI Tool Uses Imaging Data to Detect Less Frequent GI Diseases

Artificial intelligence (AI) is already being utilized in various medical fields, demonstrating significant potential in aiding doctors in diagnosing diseases through imaging data. However, training AI... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.