We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Partnership to Develop Microchip for Diagnosing Metastatic Cells

By Labmedica staff writers
Posted on 20 Dec 2006
Print article
The College of Nanoscale Science and Engineering (CNSE) of the University of Albany (Albany, NY, USA) and Albert Einstein College of Medicine of Yeshiva University (Bronx, NY, USA) will collaborate on a U.S.$2 million grant from the U.S. National Cancer Institute (NCI) to develop a next-generation microchip that, when placed in a cancerous mass, gathers information on the presence of metastatic cells that would demand more aggressive cancer therapy.

Scientists at the CNSE, led by Dr. James Castracane, professor and head of the nanobioscience constellation, will join Albert Einstein colleagues to study tumor "microenvironments.” Tumors interact with surrounding tissues, cells, and chemicals in ways that all too often encourage cancer cells to invade other areas of the body in the process known as metastasis.

"The NCI has placed a very high priority on understanding the ‘dialogue' in tumor microenvironments that appears crucial for causing cancers to spread,” said Dr. John Condeelis, co-chair of anatomy and structural biology at Albert Einstein College.

Using a multiphoton confocal microscope, Dr. Condeelis was able to directly observe cellular interactions in the tumor microenvironment of live animal models of breast cancer. By placing an artificial blood vessel near tumors, he collected motile cancer cells to study and to predict--by the presence or absence of certain signaling molecules--whether the tumor cells had the potential to metastasize.

The Einstein and Albany scientists will use nanotechnology, which involves studying and working with material on the molecular level, to design a "microchip” version of the artificial blood vessel that Dr. Condeelis has used successfully in animals.

The microchip will be assembled from nanoscale components so that several different functions can be carried out within a very small package. The goal: to implant these tiny microchips--just two to three cells in diameter and a tenth of a millimeter in length--in human tumors, where they would remain for days or weeks. The chips would report remotely to scanners that would "read” them on the nature of the cells that infiltrate them--in particular, on whether metastatic cells are present that would require aggressive cancer therapy.



Related Links:
University of Albany
Albert Einstein College of Medicine of Yeshiva University
Gold Member
Hematology Analyzer
Swelab Lumi
Automated Blood Typing System
IH-500 NEXT
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.