We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Blood Drop Assay Designed for Monitoring Antimalarial Drug Resistance

By LabMedica International staff writers
Posted on 24 Jun 2019
Print article
Image: A colorized electron micrograph showing malaria parasite (right, blue) attaching to a human red blood cell. The inset shows a detail of the attachment point at higher magnification (Photo courtesy of [U.S.]NIAID via Wikimedia Commons).
Image: A colorized electron micrograph showing malaria parasite (right, blue) attaching to a human red blood cell. The inset shows a detail of the attachment point at higher magnification (Photo courtesy of [U.S.]NIAID via Wikimedia Commons).
A new method for analyzing DNA directly in a drop of blood was designed for monitoring development of resistance to antimalarial drugs.

Monitoring of antimalarial resistance in the Plasmodium falciparum parasite is important to prevent further spread of the disease, but the available options for assessing resistance are not usually applicable to field conditions. Although molecular detection is perhaps the most efficient method, it is also the most complex because it requires DNA extraction and PCR instrumentation.

To develop an approach more suited for use outside the traditional laboratory, investigators at Vanderbilt University (Nashville, TN, USA) designed new probes, which, when used in combination with an inhibitor-tolerant Taq polymerase, enabled single-nucleotide polymorphism genotyping directly from whole blood. The Taq polymerase enzyme is a thermostable DNA polymerase I named after the thermophilic bacterium Thermus aquaticus from which it was originally isolated. It is frequently used in the polymerase chain reaction (PCR), a method for greatly amplifying the quantity of short segments of DNA.

The new probes featured two strategic design elements: locked nucleic acids to enhance specificity and the reporter dyes Cy5 and TEX615, which have less optical overlap with the blood absorbance spectra than other commonly used dyes. Probe performance was validated on a traditional laboratory-based instrument and then further tested on a field-deployable Adaptive PCR instrument.

Adaptive PCR is a previously described real-time PCR platform that used left-handed DNA (L-DNA) additives to monitor the reaction for more reliable point-of-care performance. This method was fundamentally simpler and more robust than traditional PCR. It functions by dynamically controlling thermal cycling through direct monitoring of the two key hybridization events - primer annealing and product melting - during the reaction.

Results obtained during the study revealed that the probes could discriminate between wild-type P. falciparum and a chloroquine-resistant mutant in the presence of 2% blood. This strategy greatly simplified single-nucleotide polymorphism detection and provided a more accessible alternative for antimalarial resistance surveillance in the field.

"To mitigate the inhibition by blood components, we redesigned the molecular tools used for DNA analysis. We utilized reporter dyes that are more optically compatible with blood, which were combined with a specific type of DNA subunit to accurately pinpoint mutations. The end result is an assay in which blood is directly added to a reaction tube to detect mutations associated with antimalarial drug resistance," said senior author Dr. Frederick R. Haselton, professor of biomedical engineering and chemistry at Vanderbilt University.

The antimalarial resistance study was published in the June 13, 2019, online edition of the Journal of Molecular Diagnostics.

Related Links:
Vanderbilt University

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: The real-time multiplex PCR test is set to revolutionize early sepsis detection (Photo courtesy of Shutterstock)

1 Hour, Direct-From-Blood Multiplex PCR Test Identifies 95% of Sepsis-Causing Pathogens

Sepsis contributes to one in every three hospital deaths in the US, and globally, septic shock carries a mortality rate of 30-40%. Diagnosing sepsis early is challenging due to its non-specific symptoms... Read more

Pathology

view channel
Image: The QIAseq xHYB Mycobacterium tuberculosis Panel uses next-generation sequencing (Photo courtesy of 123RF)

New Mycobacterium Tuberculosis Panel to Support Real-Time Surveillance and Combat Antimicrobial Resistance

Tuberculosis (TB), the leading cause of death from an infectious disease globally, is a contagious bacterial infection that primarily spreads through the coughing of patients with active pulmonary TB.... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.