We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Molecular Interactions Identified That Block Protein Transfer into Mitochondria of Huntington's Disease Neurons

By LabMedica International staff writers
Posted on 08 Jul 2014
Print article
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Image: A microscope image of a neuron with inclusion (stained orange) caused by Huntington\'s disease (Photo courtesy of Wikimedia Commons).
Researchers have identified a protein complex that interacts with the mutated form of huntingtin protein to impair transport of proteins into the mitochondria of brain cells, which leads to their malfunction and the loss of neurons that characterizes Huntington's disease.

Huntington’s disease is caused by a dominant gene that encodes a protein known as huntingtin (Htt). The 5' end of the Huntington's disease gene has a sequence of three DNA bases, cytosine-adenine-guanine (CAG), coding for the amino acid glutamine, that is repeated multiple times. Normal persons have a CAG repeat count of between 7 and 35 repeats, while the mutated form of the gene has anywhere from 36 to 180 repeats. The mutant form of Htt is broken down into toxic peptides, which contribute to the pathology of the syndrome.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) and their colleagues at the University of Pittsburgh (PA, USA) worked with in vitro culture models and with a mouse model that mimicked the early stages of Huntington's disease.

They reported in the May 18, 2014, online edition of the journal Nature Neuroscience that recombinant mutant Htt directly inhibited mitochondrial protein import in their culture model. Furthermore, mitochondria from the brain synaptosomes of presymptomatic Huntington's disease model mice and from mutant Htt-expressing primary neurons exhibited a protein import defect, suggesting that deficient protein import was an early event in Huntington's disease.

At the molecular level, the investigators spotted interactions between mutant Htt and the TIM23 (translocase of inner mitochondrial membrane 23) mitochondrial protein import complex. Overexpression of TIM23 complex subunits attenuated the mutant Htt–induced mitochondrial import defect and subsequent neuronal death, which demonstrated that deficient mitochondrial protein import caused mutant Htt-induced neuronal death.

“We showed the problem could be fixed by making cells overproduce the proteins that make this transfer possible,” said first author Dr. Hiroko Yano, assistant professor of neurological surgery, neurology, and genetics at the Washington University School of Medicine. “We do not know if this will work in humans, but it is exciting to have a solid new lead on how this condition kills brain cells.”

Related Links:

Washington University School of Medicine
University of Pittsburgh 


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Urine Strips
11 Parameter Urine Strips
New
Silver Member
Oncology Molecular Diagnostic Test
BCR-ABL Dx ELITe MGB Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.