We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Research Lab to Develop World’s First Neural Device to Restore Memory

By LabMedica International staff writers
Posted on 04 Aug 2014
Print article
Image: Lawrence Livermore National Laboratory (LLNL) will develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory (Photo courtesy of DOE/Lawrence Livermore National Laboratory).
Image: Lawrence Livermore National Laboratory (LLNL) will develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory (Photo courtesy of DOE/Lawrence Livermore National Laboratory).
A USD 2.5 million grant has been awarded to a US research lab to develop an implantable neural device with the ability to record and stimulate neurons within the brain to help restore memory.

The US Department of Defense’s Defense Advanced Research Projects Agency (DARPA) awarded the grant to Lawrence Livermore National Laboratory (LLNL; Livermore, CA, USA). The research builds on the knowledge that memory is a process in which neurons in specific regions of the brain encode information, store it, and retrieve it. Specific types of disorders and injuries, including traumatic brain injury (TBI), Alzheimer’s disease, and epilepsy, disrupt this process and cause memory loss. TBI, specifically, has affected 270,000 military service members since 2000.

The objective of LLNL’s research initiated by LLNL’s Neural Technology group and undertaken in collaboration with the University of California, Los Angeles (UCLA; USA) and Medtronic (Minneapolis, MN, USA) is to develop a device that uses real-time recording and closed-loop stimulation of neural tissues to bridge gaps in the injured brain and restore individuals’ ability to form new memories and access previously formed ones.

The research is funded by DARPA’s Restoring Active Memory (RAM) program. Specifically, the neural technology group are trying to develop a neuromodulation system, an advanced electronics system to modulate neurons, which will investigate areas of the brain associated with memory to understand how new memories are formed. The device will be developed at LLNL’s Center for Bioengineering.

“Currently, there is no effective treatment for memory loss resulting from conditions like TBI,” said LLNL’s project leader Dr. Satinderpall Pannu, director of the LLNL’s Center for Bioengineering, a unique facility dedicated to fabricating biocompatible neural interfaces. “This is a tremendous opportunity from DARPA to leverage Lawrence Livermore’s advanced capabilities to develop cutting-edge medical devices that will change the health care landscape.”

LLNL engineers will devise a miniature, wireless and chronically implantable neural device that will incorporate both single neuron and local field potential recordings into a closed-loop system to implant into TBI patients’ brains. The device implanted into the entorhinal cortex and hippocampus will allow for stimulation and recording from 64 channels located on two high-density electrode arrays. The entorhinal cortex and hippocampus are brain regions associated with memory.

The arrays will connect to an implantable electronics bundle capable of wireless data and power telemetry. An external electronic system worn around the ear will store digital information associated with memory storage and retrieval and provide power telemetry to the implantable package using a custom radiofrequency (RF) coil system.

The device’s electrodes will be integrated with electronics using advanced LLNL integration and 3D packaging technologies, and are designed to last throughout the duration of treatment. The microelectrodes that are the heart of this device are embedded in a biocompatible, flexible polymer. Using the Center for Bioengineering’s capabilities, Dr. Pannu and his team of engineers have achieved 25 patents and many publications during the last 10 years. The team's goal is to build the new prototype device for clinical testing by 2017.

Lawrence Livermore’s collaborators, UCLA and Medtronic, will focus on conducting clinical trials and creating parts and components, respectively. “The RAM program poses a formidable challenge reaching across multiple disciplines from basic brain research to medicine, computing and engineering,” said Itzhak Fried, lead investigator for the UCLA on this project and professor of neurosurgery and psychiatry and biobehavioral sciences at the David Geffen School of Medicine at UCLA and the Semel Institute for Neuroscience and Human Behavior. “But at the end of the day, it is the suffering individual, whether an injured member of the armed forces or a patient with Alzheimer’s disease, who is at the center of our thoughts and efforts.”

LLNL’s work on the Restoring Active Memory program supports President Obama’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) initiative. “Our years of experience developing implantable microdevices, through projects funded by the Department of Energy [DOE], prepared us to respond to DARPA’s challenge,” said Lawrence Livermore engineer Kedar Shah, a project leader in the neural technology group.

Related Links:

Lawrence Livermore National Laboratory
University of California, Los Angeles 
Medtronic


New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Centrifuge
Centrifuge 5430/ 5430 R
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.