We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




New Drug Shown to Be Effective Against Malaria Using Synchrotron Light

By LabMedica International staff writers
Posted on 04 Aug 2014
Print article
Image: In this image, the drug CD27 completely covers the minor groove of the DNA complex (Photo courtesy of the Universitat Politècnica de Catalunya).
Image: In this image, the drug CD27 completely covers the minor groove of the DNA complex (Photo courtesy of the Universitat Politècnica de Catalunya).
Spanish and Scottish investigators have shown that a new drug is an effective option in the battle against malaria.

An international group of researchers led by Dr. Lourdes Campos from the department of chemical engineering at the Universitat Politècnica de Catalunya•BarcelonaTech (UPC; Spain) has proven that the CD27 drug can be an effective option against malaria. Researchers came to this conclusion after studying the three-dimensional (3D) crystalline structure of the complex of DNA with the drug.

The CD27 drug is a complex synthesized by researchers led by Dr. Christophe Dardonville at the Instituto de Química Médica of the Spanish National Research Council’s/(IQM-CSIC) in Madrid. “CD27 is chemically related to diamidines--molecules with two amidines--and has previously been used with success in other Trypanosoma species that produce the ‘sleeping sickness’ in Africa and Chagas disease in South America,” said Dr. Campos.

The findings show how the CD27 drug completely covers the minor groove of the DNA, preventing the typical development of the parasite and causing its destruction. This research helps to better understand this range of compounds and may substantially contribute to the development of new, more effective drugs against malaria.

Once the samples of the drug were validated by Harry P. De Koning, a researcher at the University of Glasgow (Scotland, UK), they were sent to the UPC research group in crystallography, structure, and function of biologic macromolecules (MACROM), led by Dr. Campos. For over one year, the group has been working to obtain the crystalline structure of DNA.

Obtaining a DNA crystal is a multiparametric process and requires different variables; furthermore, before obtaining a DNA crystal with the drug, several tests under different conditions are required. The crystal must present a very high molecule order in the crystalline network, as this is crucial for determining the tridimensional structure of the complex. “Obtaining a good crystal is a long and hard task and requires the collaboration of groups from different disciplines. With the help of synchrotrons like the ALBA, science can make a big step forward in comparison with the methods that were available 20 years ago,” said Dr. Campos.

In the next phase, researchers studied the crystals of the complex of DNA with the drug using x-rays at the XALOC macromolecular diffraction beamline of the ALBA synchrotron (www.cells.es), located in Cerdanyola del Vallès, Spain. X-rays, when they pass through the crystal and diffract, project images of spots which, after mathematic analysis, can solve the tridimensional structure of a molecule. When MACROM researchers solved the 3D structure, they identified the details of CD27’s structure, enabling the drug to recognize the regions of DNA covering the minor groove and preventing the development of the parasite. At the same time, these studies contribute to a rational design of new drugs, bearing in mind the molecular interactions caused by CD27.

The research findings have been confirmed and deposited at the Protein Data Bank, a 3D database of proteins and nucleic acids, and published June 2014 in the journal Acta Crystallographica D. The drug is patent-free and can be produced by any pharmaceutical company interested in its development.

ALBA is the Spanish synchrotron light source. ALBA, meaning “Sunrise” in Catalan and in Spanish, is a synchrotron radiation facility. It is a complex of electron accelerators that produce synchrotron light, which allows the atomic structure of matter to be visualized and its properties to be studied. ALBA has been in operation since May 2012 and has seven experimental beamlines. This scientific infrastructure produces 5,000 hours of beamtime per year and is available for academics and the industrial sector and serves more than 1,000 researchers every year.

Related Links:

Universitat Politècnica de Catalunya•BarcelonaTech
University of Glasgow
ALBA synchrotron


New
Gold Member
Thyroid Stimulating Hormone Assay
TSH EIA 96 Test
Unit-Dose Packaging solution
HLX
New
Food Allergens Assay Kit
Allerquant 14G A
New
Quantitative Immunoassay Analyzer
AS050

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.