We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Crystal Structures Define Mode of Action of Bacteriophage Endolysins

By LabMedica International staff writers
Posted on 13 Aug 2014
Print article
Image: Electron microscopy image of the bacteriophages investigated (Photo courtesy of the European Molecular Biology Laboratory).
Image: Electron microscopy image of the bacteriophages investigated (Photo courtesy of the European Molecular Biology Laboratory).
Image: The analyzed endolysins are activated by switching from a tensed, stretched state (left) to a relaxed state (right) (Photo courtesy of the European Molecular Biology Laboratory).
Image: The analyzed endolysins are activated by switching from a tensed, stretched state (left) to a relaxed state (right) (Photo courtesy of the European Molecular Biology Laboratory).
New antibacterial agents based on bacteriophages or their endolysin enzymes have been proposed to solve the problem of the bacterium Clostridium difficile, which is becoming a serious health hazard in hospitals and healthcare institutes, due to its resistance to antibiotics.

Investigators at the European Molecular Biology Laboratory (Hamburg, Germany) based their research primarily on the bacteriophage CD27, which is capable of lysing C. difficile. In addition, they worked with a recombinant form of the CD27L endolysin, which lyses C. difficile in vitro.

To better understand how the lysis process works, the investigators determined the three-dimensional structures of the CD27L endolysin and the CTP1L endolysin from the closely related bacteriophage CPT1 that targets C. tyrobutyricum. For this task they employed X-ray crystallography and small angle X-ray scattering (SAXS), which was done at the Deutsches Elektronen-Synchrotron (DESY).

Results published in the July 24, 2014, online edition of the journal PLOS Pathogens revealed that the two endolysins shared a common activation mechanism, despite having been taken from different species of Clostridium. The activation mechanism depended on a structure where an extended dimer existed in the inactive state but switched to a side-by-side "relaxed" morphology in the active state, which triggered the cleavage of the C-terminal domain. This change of morphology led to the release of the catalytic portion of the endolysin, enabling the efficient digestion of the bacterial cell wall.

“These enzymes appear to switch from a tense, elongated shape, where a pair of endolysins is joined together, to a relaxed state where the two endolysins lie side-by-side,” said first author Dr. Matthew Dunne, a researcher at the European Molecular Biology Laboratory. “The switch from one conformation to the other releases the active enzyme, which then begins to degrade the cell wall.”

Related Links:

European Molecular Biology Laboratory


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Chlamydia Test Kit
CHLAMYTOP
New
Urine Bone Markers Control
Lyphochek Urine Bone Markers Control

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.