We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
Sekisui Diagnostics UK Ltd.

Download Mobile App




DNA Replication Difficulty May Be Key to Immune System Aging

By LabMedica International staff writers
Posted on 13 Aug 2014
Print article
Image: Molecular tags of DNA damage are highlighted in green in blood-forming stem cells (Photo courtesy of UCSF – University of California, San Francicsco).
Image: Molecular tags of DNA damage are highlighted in green in blood-forming stem cells (Photo courtesy of UCSF – University of California, San Francicsco).
People over 60 are not donor candidates for bone marrow transplantation; the immune system ages and weakens with time, making the elderly predisposed to life-threatening infection and other disorders. US researchers have now have found a reason.

“We have found the cellular mechanism responsible for the inability of blood-forming cells to maintain blood production over time in an old organism, and have identified molecular defects that could be restored for rejuvenation therapies,” said Emmanuelle Passegué, PhD, a professor of medicine and a member of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research at the University of California, San Francisco (UCSF; USA). Dr. Passegué, a stem cell specialist, led a team that published their findings online July 30, 2014 in the journal Nature.

Blood and immune cells no not live long, and not like most tissues, must be continually replenished. The cells that must keep generating them throughout a lifetime are called hematopoietic stem cells. Through cycles of cell division these stem cells preserve their own numbers and generate the daughter cells that replenish replacement blood and immune cells. But the hematopoietic stem cells falter with age, because they lose the ability to replicate their DNA accurately and efficiently during cell division, Dr. Passegué’s lab team determined.

Particularly susceptible to the degradation, the researchers discovered in their new study of older mice, are transplanted, aging, blood-forming stem cells, which no not have the ability to produce B cells of the immune system. These B cells generate antibodies to help treat many types of microbial infections, including bacteria that cause pneumonia, a leading killer of the older people.

In old blood-forming stem cells, the researchers found a lack of specific protein components needed to form a molecular machine called the mini-chromosome maintenance helicase, which unwinds double-stranded DNA so that the cell’s genetic material can be duplicated and assigned to daughter cells later in cell division. In their study, the stem cells were stressed by the loss of activity of this machine, and as a result, were at heightened risk for DNA damage and death when forced to divide.

The researchers discovered that even after the stress associated with DNA replication, surviving, non-dividing, resting, old stem cells retained molecular tags on DNA-wrapping histone proteins, a feature often associated with DNA damage. However, the researchers determined that these old survivors could repair induced DNA damage as efficiently as young stem cells. “Old stem cells are not just sitting there with damaged DNA ready to develop cancer, as it has long been postulated,” Dr. Passegué said.

The older surviving stem cells still had problems. The molecular tags accumulated on genes required to generate the cellular factories known as ribosomes. Dr. Passegué will further examine the concerns of reduced protein production as part of her ongoing research. “Everybody talks about healthier aging,” he added. “The decline of stem-cell function is a big part of age-related problems. Achieving longer lives relies in part on achieving a better understanding of why stem cells are not able to maintain optimal functioning.”

Dr. Passegué hopes that it might be possible to prevent declining stem-cell populations by developing a medicine to prevent the loss of the helicase components required to effectively unwind and replicate DNA, thereby avoiding immune-system failure.

Related Links:

University of California, San Francisco


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.