We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Evolutionary Changes Reproduced in the Lab by Manipulating Embryonic Development of Mice

By LabMedica International staff writers
Posted on 18 Aug 2014
Print article
Researchers have been able experimentally to reproduce in mice morphologic alterations that have taken millions of years to occur. Through small and gradual modifications in the embryonic development of mice teeth, produced in the laboratory, scientists have obtained teeth that morphologically are very similar to those observed in the fossil registry of rodent species that evolved from mice millions of years ago.

To modify the development of their teeth, the team from the Institute of Biotechnology of the University of Helsinki (Finland) worked with embryonic teeth cultures from mice not coded by the ectodysplasin A (EDA) protein, which regulates the formation of structures and differentiation of organs in the embryo throughout its development. The teeth obtained with these cultures which present this mutation develop into very fundamental forms, with very uniform crowns. Scientists gradually added different amounts of the EDA protein to the embryonic cells and let them develop.

The researchers observed that the teeth formed with different levels of complexity in their crown. The more primitive changes observed coincide with those which took place in animals of the Triassic period, some two hundred million years ago. The development of more posterior patterns corresponds with the different stages of evolution discovered in rodents that already became extinct in the Paleocene Epoch, approximately 60 million years ago. Researchers have therefore achieved the reproduction of the transitions observed in the fossil registry of mammal teeth.

The scientists were able to compare the shape of these teeth with a computer-generated prediction model created by Dr. Isaac Salazar-Ciudad, researcher at the Universitat Autònoma de Barcelona (UAB; Spain) and at the University of Helsinki, which reproduces how the tooth changes from a group of equal cells to a complicated three-dimensional (3D) structure, with the full shape of a molar tooth, computing the position of space of each cell. The model is capable of forecasting the changes in the morphology of the tooth when a gene is engineered, and therefore offers an explanation of the processes that cause these specific alterations to occur in the shape of teeth throughout evolution.

“Evolution has been explained as the ability of individuals to adapt to their environment in different ways,” Dr. Salazar-Ciudad stated, “But we do not know why or how individuals differ morphologically. The research helps to understand evolution, in each generation, as a game between the possible variations in form and natural selection.”

The research findings were published July 30, 2014, in the journal Nature.

Related Links:

Institute of Biotechnology of the University of Helsinki
Universitat Autònoma de Barcelona


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Human Insulin CLIA
Human Insulin CLIA Kit
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.