We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Biomedical Research Advanced by Technology That Sees Through Organs

By LabMedica International staff writers
Posted on 24 Aug 2014
Print article
Image: 3D visualization of intact kidney tissue, obtained through the whole-body clearing and staining PARS method (Photo courtesy of Bin Yang and Viviana Gradinaru, Caltech).
Image: 3D visualization of intact kidney tissue, obtained through the whole-body clearing and staining PARS method (Photo courtesy of Bin Yang and Viviana Gradinaru, Caltech).
Image: 3D visualization of intact intestine tissue, obtained through the whole-body clearing and staining PARS method (Photo courtesy of Bin Yang and Viviana Gradinaru, Caltech).
Image: 3D visualization of intact intestine tissue, obtained through the whole-body clearing and staining PARS method (Photo courtesy of Bin Yang and Viviana Gradinaru, Caltech).
Image: (A and B) The (A) dorsal and (B) ventral view of whole Thy1-eYFP mouse after PARS clearing with 8% SDS for one week showed good optical transparency of whole body. Arrowhead in (B) points to cleared kidney. (C) The image of the brain for the same mouse. Images were taken using bright field camera (Photo courtesy of Cell, Yang et al, Caltech).
Image: (A and B) The (A) dorsal and (B) ventral view of whole Thy1-eYFP mouse after PARS clearing with 8% SDS for one week showed good optical transparency of whole body. Arrowhead in (B) points to cleared kidney. (C) The image of the brain for the same mouse. Images were taken using bright field camera (Photo courtesy of Cell, Yang et al, Caltech).
The capability to see through organs and even the entire body to visualize long-range connections between cells, as well as the subtle aspects of cellular structures has been a long-time quest for biologists. A study has now made this a reality, revealing simple ways for making opaque organs, bodies, and human tissue biopsies transparent, while keeping the cellular structures and connections intact.

The protocols could create avenues for a better determination of brain-body interactions, more accurate clinical diagnoses and disease monitoring, and a new generation of therapies for disorders ranging from autism to chronic pain. “Although the idea of tissue clearing has been around for a century, to our knowledge, this is the first study to perform whole-body clearing, as opposed to first extracting and then clearing organs outside the adult body,” said senior study author Dr. Viviana Gradinaru of the California Institute of Technology (Caltech; Pasadena, USA). The findings were published July 31, 2014, in the journal Cell. “Our methodology has the potential to accelerate any scientific endeavor that would benefit from whole-organism mapping, including the study of how peripheral nerves and organs can profoundly affect cognition and mental processing, and vice versa.”

Three-dimensional maps of intact organs and bodies are key for understanding complex, long-distance cellular interactions that play an important role in a range of biological processes. But until now, methods for making whole organs or bodies transparent and thus amenable to imaging and generating three-dimensional (3D) maps have been limited to the brain or embryos. Dr. Gradinaru and her collaborators earlier developed a brain-clearing technique called CLARITY (Clear, Lipid-exchanged, Acrylamide-hybridized Rigid, Imaging/immunostaining compatible, Tissue hYdrogel), which involves embedding tissue into hydrogels to preserve its 3D structure and important molecular features, and then using detergents to extract lipids that make the tissue opaque.

In the new study, the researchers set out to make CLARITY suitable for whole organs and bodies, in part by making the process faster. First, they identified the optimal hydrogel that allows detergents to quickly remove lipids from tissue using an approach named passive CLARITY technique (PACT). To great speed up the clearing process without causing tissue damage, they introduced an advanced procedure called perfusion-assisted agent release in situ (PARS), which involves directly delivering the hydrogel and clearing reagents into the bloodstream of intact rodents. The reagents diffused throughout the tissues and fully clarified organs such as the kidney, heart, lung, and intestine within two to three days, while the whole brain and entire body cleared within two weeks.

The researchers also developed a recipe for refractive index matching solution (RIMS), which enables the long-term storage of cleared tissue and imaging thick, cleared tissue using a traditional confocal microscope. The new technologies allow for the study of intact connections between cells as well as structures and molecules within single cells using standard genetic and molecular biology techniques. “Our easy-to-use tissue clearing protocols, which employ readily available and cost-effective reagents and equipment, will make the subcellular interrogation of large tissue samples an accessible undertaking within the broader research and clinical communities,” Dr. Gradinaru said.

Related Links:

California Institute of Technology


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
LH ELISA
Luteinizing Hormone ELISA
New
Sulfidoleukotrienes (sLT) Assay
CAST ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.