We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Bladder Tissue Regeneration Strategy Developed Using Anti-inflammatory Nanomolecules

By LabMedica International staff writers
Posted on 07 Sep 2014
Print article
New nanotechnology has been developed that may protect the body against inflammatory reactions.

When tissue in the body is damaged, biologic processes are triggered to help repair tissue. An inflammatory response acts as a protective mechanism to enable repair and regeneration, helping the body to heal after injuries such as wounds and burns. However, the same mechanism may impede healing in instances in which foreign material is introduced, for example, when synthetics are grafted to skin for dermal repair. In such cases, the inflammation may lead to tissue fibrosis, which creates an obstacle to effective physiologic function.

The research group of Arun Sharma, PhD, from the Stanford School of Medicine (CA, USA), has been working on novel strategies on tissue regeneration to improve the lives of patients with urinary bladder dysfunction. Among their developments was a medical model for regenerating bladders using stem cells harvested from a donor’s own bone marrow. The researchers reported these findings in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) in 2013.

More recently, the scientists have developed a system that may protect against the inflammatory reaction that can negatively impact tissue growth, development, and function. Self-assembling peptide amphiphiles (PAs) are biocompatible and biodegradable nanomaterials that have demonstrated utility in a wide range of settings and applications. Using an established urinary bladder augmentation model, the investigators treated a highly pro-inflammatory biologic scaffold used in a wide array of settings with anti-inflammatory peptide amphiphiles (AIF-PAs). When compared with control PAs, the treated scaffold showed regenerative capacity while modulating the innate inflammatory response, resulting in superior bladder function.

The study’s findings are slated to be published in the November 2014 issue of the journal Biomaterials. “Our findings are very relevant not just for bladder regeneration but for other types of tissue regeneration where foreign materials are utilized for structural support. I also envision the potential utility of these nanomolecules for the treatment of a wide range of dysfunctional inflammatory based conditions,” concluded Dr. Sharma.

Related Links:

Stanford School of Medicine


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Rocking Shaker
HumaRock
New
Lab Sample Rotator
H5600 Revolver

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.