We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

By LabMedica International staff writers
Posted on 14 Sep 2014
Print article
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the molecule microRNA193 (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment (Photo courtesy of UCLA - University of California, Los Angeles).
Image: Differences in the structure of a small lung artery (top row) and heart (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the molecule microRNA193 (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with microRNA-193 treatment (Photo courtesy of UCLA - University of California, Los Angeles).
A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms of pulmonary arterial hypertension in a population of laboratory animals.

A pathogenic role for oxidized lipids such as hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids has been well established in vascular diseases including pulmonary arterial hypertension. Apolipoprotein A-I mimetic peptides, including 4F, have been reported to reduce levels of these oxidized lipids and improve vascular disease. However, the roles of oxidized lipids in the progression of pulmonary arterial hypertension and the therapeutic action of 4F in pulmonary arterial hypertension have not been well established.

Investigators at the University of California, Los Angeles (USA) studied two different rodent models of pulmonary hypertension: a monocrotaline rat model and a hypoxia mouse model. In addition, they examined lung tissues and serum from human patients with pulmonary arterial hypertension.

Results published in the August 26, 2014, issue of the journal Circulation revealed that plasma levels of hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids were significantly elevated in the rodents with pulmonary hypertension. 4F treatment reduced these levels and alleviated preexisting pulmonary hypertension in both rodent models.

MicroRNA analysis revealed that microRNA-193-3p (miR193) was significantly down regulated in the lung tissue and serum from both patients with pulmonary arterial hypertension and rodents with pulmonary hypertension. In vivo miR193 overexpression in the lungs abolished preexisting pulmonary hypertension and resulted in down regulation of lipoxygenases and insulin-like growth factor-1 receptor. 4F restored pulmonary hypertension-induced miR193 expression via transcription factor retinoid X receptor alpha.

These results established the importance of microRNAs as downstream effectors of an apolipoprotein A-I mimetic peptide in the reversal of pulmonary hypertension and suggest that treatment with apolipoprotein A-I mimetic peptides or miR193 may have therapeutic value.

“Our research helps unravel the mechanisms involved in the development of pulmonary hypertension,” said senior author Dr. Mansoureh Eghbali, associate professor of anesthesiology at the University of California, Los Angeles. “A key peptide related to HDL cholesterol that can help reduce these oxidized lipids may provide a new target for treatment development.”

Related Links:

University of California, Los Angeles


Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Automated Blood Typing System
IH-500 NEXT
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.