We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Risk of Cardiovascular Disease Linked to Apolipoprotein E Variants

By LabMedica International staff writers
Posted on 29 Sep 2014
Print article
Image: Illustration of the apoER2 receptor protein shows the structure of the entire protein in detail (Photo courtesy of Wikimedia Commons).
Image: Illustration of the apoER2 receptor protein shows the structure of the entire protein in detail (Photo courtesy of Wikimedia Commons).
The apoE4 variant form of circulating apolipoprotein E (apoE) leads to increased risk of cardiovascular disease by blocking binding of the normal apoE3 form to the apoliprotein E receptor 2 (apoER2) in the membranes of endothelial cells lining the walls of blood vessels and by interacting with the receptor without stimulating production of anti-inflammatory nitric oxide (NO).

Nitric oxide is a crucial physiological messenger molecule that plays a role in blood pressure regulation, control of blood clotting, immune defense, digestion, the senses of sight and smell, and possibly learning and memory. In addition to heightened susceptibility to cancer and neurodegenerative diseases, nitric oxide deficiency has been linked to diverse disease processes such as diabetes, stroke, hypertension, impotence, septic shock, and long-term depression.

ApoER2 is a membrane protein made up of 870 amino acids. It is separated into a ligand binding domain of eight ligand binding regions, an EGF-like domain containing three cysteine-rich repeats, an O-linked glycosylation domain of 89 amino acids, a transmembrane domain of 24 amino acids, and a cytoplasmic domain of 115 amino acids, including an arginine-proline-any amino acid-tyrosine (NPXY) motif.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) worked with cell culture and mouse models to determine how the interaction between apoE variants and the apoER2 receptor influence risk of developing cardiovascular disease.

They reported in the September 2, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) that in endothelial cells apoE3 binding to ApoER2 stimulated endothelial NO synthase (eNOS) and endothelial cell migration, and it also attenuated monocytes-endothelial cell adhesion. However, apoE4 did not stimulate eNOS or endothelial cell migration or dampen cell adhesion, and alternatively it selectively inhibited apoE3/apoER2 actions. Approximately 15% of individuals possess the gene coding for apoE4, and these individuals are at increased risk of developing atherosclerosis and coronary heart disease.

The investigators also identified in endothelium a nonfunctional variant of apoER2, apoER2-R952Q, which failed to generate production of NO after interaction with apoE3.

"We believe that we have identified one mechanism by which apoE3 promotes a healthy cardiovascular system and why a genetic variant, apoE4, is detrimental," said senior author Dr. Philip Shaul, professor of pediatrics at the University of Texas Southwestern Medical Center. "An important mechanism that is lost when people possess apoE4 is the ability to produce NO, which leads to a loss of both the reparative and anti-inflammatory capacities of the endothelium. Now, knowing this information, we believe such individuals may benefit from treatment with an NO donor. There is a form of aspirin, for instance, that is an NO donor."

Related Links:

University of Texas Southwestern Medical Center


New
Gold Member
Pharmacogenetics Panel
VeriDose Core Panel v2.0
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Free Human Prostate-Specific Antigen CLIA
LIAISON fPSA
New
Herpes Virus Test
Human Herpes Virus (HHV-6) Real Time PCR Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.