We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Artificial Sweeteners May Promote Development of Glucose Intolerance and Weight Gain

By LabMedica International staff writers
Posted on 01 Oct 2014
Print article
Image: Electron microscope image of a healthy mouse small intestine showing bacteria (strings) surrounding the gut villi (protrusions). A human small intestine looks very similar (Photo courtesy of the Weizmann Institute of Science).
Image: Electron microscope image of a healthy mouse small intestine showing bacteria (strings) surrounding the gut villi (protrusions). A human small intestine looks very similar (Photo courtesy of the Weizmann Institute of Science).
Recently published findings have stirred a controversy by indicating that noncaloric artificial sweeteners (NAS), a key components of diet drinks and foods, actually promote development of glucose intolerance, metabolic disease, and obesity by causing profound changes in the composition and function of the organisms that make up the intestinal microbiome (gut microbiota).

Investigators at the Weizmann Institute of Science (Rehovot, Israel) worked with mouse models as well as evaluating data accumulated by the Personalized Nutrition Project, a large human trial probing the connection between nutrition and the microbiota.

They reported in the September 17, 2014, online edition of the journal Nature that consumption of commonly used NAS formulations drove the development of glucose intolerance through induction of compositional and functional alterations to the intestinal microbiota. These NAS-mediated deleterious metabolic effects were reversed by antibiotic treatment, and were fully transferable to germ-free mice upon fecal transplantation of microbiota configurations from NAS-consuming mice. Similar changes were observed in anaerobic cultures of organisms from the gut microbiota that were grown in the presence of NAS.

The investigators identified NAS-altered microbial metabolic pathways that were linked to host susceptibility to metabolic disease, and demonstrated similar NAS-induced microbial imbalance and glucose intolerance in healthy human subjects.

Senior author Dr. Eran Elinav, professor of immunology at the Weizmann Institute of Science, said, "Certain bacteria in the guts of those who developed glucose intolerance reacted to the chemical sweeteners by secreting substances that then provoked an inflammatory response similar to sugar overdose, promoting changes in the body’s ability to utilize sugar. Our relationship with our own individual mix of gut bacteria is a huge factor in determining how the food we eat affects us. Especially intriguing is the link between use of artificial sweeteners, through the bacteria in our guts, to a tendency to develop the very disorders they were designed to prevent; this calls for reassessment of today’s massive, unsupervised consumption of these substances.”

Related Links:

Weizmann Institute of Science
Personalized Nutrition Project


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Adenovirus Detection Kit
REALQUALITY RQ-ADENO
New
Food Allergens Assay Kit
Allerquant 14G A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.