We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

By LabMedica International staff writers
Posted on 29 Oct 2014
Print article
A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells.

Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published this groundbreaking finding October 17, 2014, in the international journal Science. By means of some of the shortest laser pulses, the researchers employed strobe lighting to monitor the ultra-fast movement of the electrons within a nanometer-sized molecule of amino acid. The resulting oscillations—lasting for 4,300 attoseconds—amount to the fastest process ever observed in a biologic structure.

Dr. Greenwood said, “Explaining how electrons move on the nanoscale is crucial for the understanding of a range of processes in matter as it is this charge which initiates many biological, chemical, and electrical processes. For instance, the charge produced from the interaction of ionizing radiation with DNA and its subsequent ultra-fast movement can lead to damage of the DNA and cell death which is exploited in radiotherapy to treat cancer. This knowledge is therefore important for understanding the action of radiotherapy beams in cancer treatment. Being able to describe how light interacts with electrons on these timescales could also lead to improvements in how light is converted into electricity in solar cells or faster microprocessors, which use light rather than electrical signals for switching transistors.”

The research was performed by Queen’s School of Mathematics and Physics in collaboration with the Politecnico Milano (Italy), the Universidad Autónoma of Madrid (Spain), University of Trieste (Italy), and Institute of Photonics and Nanotechnologies IFN-CNR (Padua, Italy).

Dr. Greenwood concluded, “This research will hopefully open up the emerging field of attosecond science which seeks to understand how ultrafast electrons play a key role in chemistry, biology and nanotechnology. This is very early research but this new field of ultrafast light-induced electronics is likely to have an impact in biology, chemistry and materials in the next five to 10 years. Practical applications down the line may include improvements in cancer radiotherapy, highly efficient solar cells, and much faster computer processors.”

Related Links:

Queen’s University Belfast
Politecnico Milano 
Universidad Autónoma of Madrid 


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Silver Member
Benchtop Image Acquisition Device
Microwell Imager
New
Centrifuge
Centrifuge 5430/ 5430 R

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.