We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Study Probes Role of Sestrin 3 in Glucose Metabolism and Diabetes Development

By LabMedica International staff writers
Posted on 18 Nov 2014
Print article
Image: The Sestrin 3 protein, labeled in red fluorescence and shown interacting with other proteins (highlighted in yellow) in the liver, may have implications in treating type II diabetes (Photo courtesy of the Indiana University School of Medicine).
Image: The Sestrin 3 protein, labeled in red fluorescence and shown interacting with other proteins (highlighted in yellow) in the liver, may have implications in treating type II diabetes (Photo courtesy of the Indiana University School of Medicine).
A recent paper discussed the role of sestrin proteins in resisting oxidative stress and regulating metabolic processes such as glucose production and insulin sensitivity, which are disrupted in type II diabetes and metabolic syndrome.

Investigators at Indiana University School of Medicine (Indianapolis, USA) focused their attention on the protein Sestrin 3 (Sesn3). The gene for this protein in humans is located on chromosome 11q21. The sestrin family of proteins, of which Sesn3 is a member, comprises cysteine sulfinyl reductases, and they modulate peroxide signaling and antioxidant defense. These proteins selectively reduce or repair hyperoxidized forms of typical 2-cysteine peroxiredoxins (enzymes that metabolize peroxides) in eukaryotes.

Sestrin expression was found to be regulated by the tumor suppressor protein p53. Sesn3 was identified as a forkhead box O (FoxO) protein with antioxidant activity. Recently it was reported that Sesn3 may play an important role in Akt induced increase in reactive oxygen species (ROS), and it might be a promising target in selectively killing cancer cells containing high levels of Akt activity.

Akt, also known as protein kinase B (PKB), is a serine/threonine-specific protein kinase that plays a key role in multiple cellular processes such as glucose metabolism, apoptosis, cell proliferation, transcription, and cell migration. Akt is hyperactivated in cancer. This hyperactivity leads to an increase in intracellular ROS mainly by inhibiting the expression of ROS scavengers downstream of FoxO, such as Sesn3.

In the current study, the investigators generated Sesn3 liver-specific transgenic and knockout mice. These animals were fed a diet with 18% of its calories from fat or a high-fat diet with 60% of calories from fat.

Results published in the November 5, 2014, online edition of the journal Diabetes revealed that mice lacking Sesn3 had elevated fasting blood glucose levels, indicative of impaired liver insulin sensitivity or poorly regulated glucose metabolism. Insulin and glucose tolerance tests were significantly improved in Sesn3-positive control mice.

Biochemical analysis revealed that Sesn3 interacted with and activated mTORC2 (mechanistic target of rapamycin complex 2) and subsequently stimulated Akt phosphorylation at serine 473. These findings suggested that Sesn3 could activate Akt via mTORC2 to regulate liver insulin sensitivity and glucose metabolism.

Senior author Dr. X. Charlie Dong, associate professor of biochemistry and molecular biology at the Indiana University School of Medicine, said, "We wanted to show that Sestrin 3 had critical liver-specific functions. This is a very fascinating protein. It is not very big, but it functions in a very dynamic manner controlling glucose production and insulin sensitivity. It is an important regulator for glucose homeostasis."

Related Links:

Indiana University School of Medicine


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Unit-Dose Packaging solution
HLX
New
Flow Cytometer
BF – 710
New
Progesterone Serum Assay
Progesterone ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: Schematic overview of maternal biomarker discovery using cell-free RNA during pregnancy (Photo courtesy of Circulation Research (2024). DOI: 10.1161/CIRCRESAHA.124.325024)

Maternal Blood Test Identifies Congenital Heart Diseases in Fetus

Each year, around 1,000 children are born with a single ventricle heart defect (SVHD), a condition where one of the heart's lower chambers is underdeveloped, too small, or missing a valve.... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.