We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Protein That Causes Damage in Early Brain Development Linked to Schizophrenia

By LabMedica International staff writers
Posted on 01 Dec 2014
Print article
Image: Structure of a typical neuron dendrite (Photo courtesy of Wikimedia Commons).
Image: Structure of a typical neuron dendrite (Photo courtesy of Wikimedia Commons).
Overexpression of a protein encoded by a susceptibility gene for schizophrenia was found to cause defective cortical patterning, which results in pathological structural changes in the developing brain.

The role of nitric oxide synthase 1 adaptor protein (NOS1AP) in the development of schizophrenia was studied in a rat model by investigators at Rutgers University (New Brunswick, NJ, USA). NOS1AP is cytosolic protein that binds to the signaling molecule, neuronal nitric oxide synthase (nNOS). This protein has a C-terminal PDZ-binding domain that mediates interactions with nNOS and an N-terminal phosphotyrosine binding (PTB) domain that binds to the small monomeric G protein, Dexras1. Studies have shown that this protein functions as an adapter protein linking nNOS to specific targets, such as Dexras1 and the synapsins.

Working with a rat model, the investigators knocked down or co-overexpressed NOS1AP and a GFP (green fluorescent protein) or TagRFP (red fluorescent protein) reporter in neuronal progenitor cells of the embryonic rat neocortex using an utero electroporation technique. They analyzed sections of cortex (ventricular zone, intermediate zone, and cortical plate containing GFP or TagRFP positive cells and counted the percentage of positive cells that migrated to each region from at least three rats for each condition.

Results published in the October 29, 2014, online edition of the journal Biological Psychiatry revealed that NOS1AP overexpression disrupted neuronal migration, resulting in increased cells in the intermediate zone and fewer cells in the cortical plate. An overabundance of NOS1AP also inhibited the process of dendritogenesis, neuronal growth during early brain development that is crucial to creating appropriate neural network structures necessary for all brain functions. In contrast, results from rats where NOS1AP production was "knocked down" showed increased neuronal migration, with more cells reaching the cortical plate.

"When the brain develops, it sets up a system of the right type of connectivity to make sure that communication can occur," said senior author Dr. Bonnie Firestein, professor of cell biology and neuroscience at Rutgers University. "What we saw here was that the nerve cells did not move to the correct locations and did not have dendrites that branch out to make the connections that were needed. The next step would be to let the disease develop in the laboratory and try to treat the over expression of the protein with an antipsychotic therapy to see if it works."

Related Links:

Rutgers University


Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Histamine ELISA
Histamine ELISA
New
17 Beta-Estradiol Assay
17 Beta-Estradiol Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.