We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

By LabMedica International staff writers
Posted on 14 Dec 2014
Print article
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).
An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them.

Investigators at the University of California, San Francisco (USA), St. Jude Children’s Research Hospital (Memphis, TN, USA), and other institutions treated a mouse model of malaria with the candidate drug compound (+)-SJ733. This drug was developed from a dihydroisoquinolone chemical series that had been identified in a phenotypic high-throughput screen. The compound is thought to inhibit the enzyme Plasmodium falciparum Ca2+-ATPase (ATP4), which is a cation-transporting ATPase responsible for maintaining low intracellular sodium ion levels in the parasite.

Results published in the December 1, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America revealed that in the mouse model, a single dose of (+)-SJ733 killed 80% of malaria parasites within 24 hours, and after 48 hours no parasites were detectable.

In vitro, the treatment of parasitized erythrocytes with (+)-SJ733 caused rapid disruption of sodium ion equilibrium in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence.

The immune systems of the treated animals responded to these changes in infected erythrocytes by removing them using the same mechanism the body relies on to rid itself of aging red blood cells. Parasites that evolved resistance to (+)-SJ733 were defective in other ways and failed to transmit the disease.

Contributing author Dr. Joseph DeRisi, professor of biochemistry and biophysics at the University of California, San Francisco, said, "The data suggest that compounds targeting ATP4 induce physical changes in the infected red blood cells that allow the immune system or erythrocyte quality control mechanisms to recognize and rapidly eliminate infected cells. This rapid clearance response depends on the presence of both the parasite and the investigational drug. That is important because it leaves uninfected red blood cells, also known as erythrocytes, unharmed."

Further development of (+)-SJ733 and the requisite clinical trials will be conducted by a consortium that includes investigators at St. Jude Children’s Research Hospital, the Swiss-based non-profit organization Medicines for Malaria Venture (Geneva, Switzerland), and the Japanese pharmaceutical company Eisai (Tokyo, Japan).

Related Links:

University of California, San Francisco
St. Jude Children’s Research Hospital
Medicines for Malaria Venture



New
Gold Member
Pneumocystis Jirovecii Detection Kit
Pneumocystis Jirovecii Real Time RT-PCR Kit
Unit-Dose Packaging solution
HLX
New
ELISA System
ABSOL HS DUO
New
Urine Collection Container
Urine Monovette

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.