We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

By LabMedica International staff writers
Posted on 14 Dec 2014
Print article
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).
An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them.

Investigators at the University of California, San Francisco (USA), St. Jude Children’s Research Hospital (Memphis, TN, USA), and other institutions treated a mouse model of malaria with the candidate drug compound (+)-SJ733. This drug was developed from a dihydroisoquinolone chemical series that had been identified in a phenotypic high-throughput screen. The compound is thought to inhibit the enzyme Plasmodium falciparum Ca2+-ATPase (ATP4), which is a cation-transporting ATPase responsible for maintaining low intracellular sodium ion levels in the parasite.

Results published in the December 1, 2014, online edition of the journal Proceedings of the National Academy of Sciences of the United States of America revealed that in the mouse model, a single dose of (+)-SJ733 killed 80% of malaria parasites within 24 hours, and after 48 hours no parasites were detectable.

In vitro, the treatment of parasitized erythrocytes with (+)-SJ733 caused rapid disruption of sodium ion equilibrium in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence.

The immune systems of the treated animals responded to these changes in infected erythrocytes by removing them using the same mechanism the body relies on to rid itself of aging red blood cells. Parasites that evolved resistance to (+)-SJ733 were defective in other ways and failed to transmit the disease.

Contributing author Dr. Joseph DeRisi, professor of biochemistry and biophysics at the University of California, San Francisco, said, "The data suggest that compounds targeting ATP4 induce physical changes in the infected red blood cells that allow the immune system or erythrocyte quality control mechanisms to recognize and rapidly eliminate infected cells. This rapid clearance response depends on the presence of both the parasite and the investigational drug. That is important because it leaves uninfected red blood cells, also known as erythrocytes, unharmed."

Further development of (+)-SJ733 and the requisite clinical trials will be conducted by a consortium that includes investigators at St. Jude Children’s Research Hospital, the Swiss-based non-profit organization Medicines for Malaria Venture (Geneva, Switzerland), and the Japanese pharmaceutical company Eisai (Tokyo, Japan).

Related Links:

University of California, San Francisco
St. Jude Children’s Research Hospital
Medicines for Malaria Venture



Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Automated Blood Typing System
IH-500 NEXT
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Gold Member
Syphilis Screening Test
VDRL Antigen MR

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.