We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Holographic Haptic Shapes Realized Using Ultrasound

By LabMedica International staff writers
Posted on 17 Dec 2014
Print article
Image: Ultrasound is focused to create the shape of a virtual sphere. (Photo courtesy of Bristol Interaction and Graphics group, University of Bristol).
Image: Ultrasound is focused to create the shape of a virtual sphere. (Photo courtesy of Bristol Interaction and Graphics group, University of Bristol).
Technology has quickly changed recently with touch feedback, known as haptics, being used in rehabilitation, entertainment, and even surgical training. New research, using ultrasound, has created an invisible three-dimensional (3-D) haptic shape that can be both seen and felt.

The study’s findings, published in the December 2014 issue of ACM Transactions on Graphics, and which was presented at the SIGGRAPH Asia 2014 Conference, held December 3–6, in Shenzhen (China), demonstrated how a holographic technology has been created to produce 3-D shapes that can be felt in mid-air.

The research, led by Dr. Ben Long and colleagues Prof. Sriram Subramanian, Sue Ann Seah, and Tom Carter from the University of Bristol’s (UK) department of computer science, could change the way 3D shapes are used. The new technology could enable surgeons to study a computed tomography (CT) scan by enabling them to feel a disease, such as a tumor, using haptic feedback.

The technology uses ultrasound, which is focused onto hands above the device and that can be felt. By focusing complicated patterns of ultrasound, the air disturbances can be seen as floating 3-D shapes. The investigators have visually demonstrated the ultrasound patterns by directing the device at a thin layer of oil so that the depressions in the surface can be seen as spots when lit by a lamp. The system generates an invisible 3-D shape that can be added to 3-D displays to create something that can be seen and felt. The researchers have also shown that users can match a picture of a 3-D shape to the shape created by the system.

Dr. Ben Long, research assistant from the Bristol Interaction and Graphics (BIG) group in the department of computer science, said, “Touchable holograms, immersive virtual reality that you can feel and complex touchable controls in free space, are all possible ways of using this system. In the future, people could feel holograms of objects that would not otherwise be touchable, such as feeling the differences between materials in a CT scan or understanding the shapes of artefacts in a museum.”

Related Links:

University of Bristol


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit
New
Human Insulin CLIA
Human Insulin CLIA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.