We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




New Packaging Revives Potential for Highly Toxic Cancer Drug

By LabMedica International staff writers
Posted on 28 Dec 2014
Print article
Image: 3BrPA (red) encased in a sugar-based microshell (Photo courtesy of Dr. Jean-Francois Geschwind, Johns Hopkins University).
Image: 3BrPA (red) encased in a sugar-based microshell (Photo courtesy of Dr. Jean-Francois Geschwind, Johns Hopkins University).
Cancer researchers have shown that sequestering the highly toxic drug 3-bromopyruvate (3BrPA) in a sugar-based molecular microcapsule protects the drug from being inactivated in the bloodstream and eliminates the toxicity that prevents its general use as a chemotherapeutic agent.

Investigators at Johns Hopkins University (Baltimore, MD, USA) encased molecules of 3BrPA in a polymeric coating made from the sugar cyclodextrin. This coating prevented the premature disintegration of the 3BrPA drug molecules and safeguarded healthy tissue from the drug's toxic effects.

Phase-contrast microscopy, bioluminescence imaging (BLI), zymography, and Matrigel assays were used to characterize the effects of the drug in vitro. In vivo effects were studied by using the encapsulated drug to treat a mouse model carrying human pancreatic tumor xenografts.

Results of the Matrigel invasion assay as well as zymography published in the October 17, 2014, online edition of the journal Clinical Cancer Research revealed that the encapsulated drug showed anti-invasive effects in sub-lethal concentrations. In vivo, animals treated with the encapsulated 3BrPA demonstrated minimal or no tumor progression as evident by the BLI signal as opposed to control animals treated with the drug gemcitabine or with only the cyclodextrin. In contrast to animals treated with free 3-BrPA, no lethal toxicity was observed for the encapsulated drug.

“We developed 3BrPA to target a hallmark of cancer cells, namely their increased dependency on glucose compared with normal cells. But the nonencapsulated drug is toxic to healthy tissues and inactivated as it navigates through the blood, so finding a way to encapsulate the drug and protect normal tissues extends its promise in many cancers as it homes in on tumor cells,” said senior author Dr. Jean-Francois Geschwind, professor of radiology at Johns Hopkins University. “The extremely promising results of the study make the encapsulated drug a good candidate for clinical trials, particularly for patients with pancreatic ductal adenocarcinoma.”

Related Links:

Johns Hopkins University


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
Histamine ELISA
Histamine ELISA
New
Vitamin B12 Test
CHORUS CLIA VIT B12

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.