We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Culture-Based High Throughput Screen Detects Potent Anti-Ovarian Cancer Drugs

By LabMedica International staff writers
Posted on 23 Feb 2015
Print article
Image: The micrograph shows a multilayered three-dimensional \"organotypic\" platform for quantitative high-throughput screening to identify new therapeutics for ovarian cancer. Fibroblasts are red. Mesothelial cells are blue. Ovarian cancer cells are green. The square image is the XY-planes (up-down, right-left). The images on the sides are Z-planes (depth) (Photo courtesy of Lengyel laboratory, University of Chicago).
Image: The micrograph shows a multilayered three-dimensional \"organotypic\" platform for quantitative high-throughput screening to identify new therapeutics for ovarian cancer. Fibroblasts are red. Mesothelial cells are blue. Ovarian cancer cells are green. The square image is the XY-planes (up-down, right-left). The images on the sides are Z-planes (depth) (Photo courtesy of Lengyel laboratory, University of Chicago).
Cancer researchers have developed a high throughput system for screening drugs against ovarian tumors that is based on inhibition of cancer cells growing in a three-dimensional culture system.

Most high throughput screening (HTS) assays for drug discovery use cancer cells grown in monolayers despite the fact that the tumor microenvironment is known to contribute to cancer metastasis and drug resistance. To incorporate the tumor microenvironment into the drug screening process, investigators at the University of Chicago (IL, USA) coated the wells of 384- and 1,536-well microtiter plates with a multilayered cellular mixture containing primary human fibroblasts, mesothelial cells, and extracellular matrix. Cultures of fluorescently labeled ovarian cancer cells from three different lines (HeyA8, SKOV3ip1, and Tyk-nu) were added to the wells and then exposed to a library of small-molecule compounds. The numbers of adhering and invasive ovarian cancer cells were counted, and the inhibitory potential of each compound evaluated.

Results published in the February 5, 2015, online edition of the journal Nature Communications revealed that in the initial screen of 2,420 compounds there were 17 compounds that inhibited cell adhesion and invasion by at least 75%. Six of these compounds were active in a dose-response relationship in all three ovarian cancer cell lines, and four compounds significantly inhibited key ovarian cancer cell functions in the early steps of metastasis at low doses. One of the compounds, beta-escin, which is isolated from the seeds of the Chinese horse chestnut, was found to inhibit tumor growth and metastasis by 97%.

"Visualizing how cancer cells interact with a tumor microenvironment that accurately reflects the complex biology of ovarian cancer should help us understand the mechanisms underlying metastatic progression as well as identify new therapeutics that can inhibit this process," said senior author Dr. Ernst Lengyel, professor of obstetrics and gynecology at the University of Chicago. "We think this novel screening system has the potential to uncover new, more effective medications that could be targeted more specifically at a patient's cancer."

Related Links:

University of Chicago


New
Gold Member
C-Reactive Protein Reagent
CRP Ultra Wide Range Reagent Kit
Antipsychotic TDM Assays
Saladax Antipsychotic Assays
New
Flow Cytometer
BF – 710
New
Automated Cell Counter
QuadCount

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Molecular Diagnostics

view channel
Image: The bowel cancer breakthrough could result in better treatment outcomes (Photo courtesy of 123RF)

New RNA Molecules Can Help Predict Bowel Cancer Return Recurrence

Colorectal cancer accounts for 10% of all cancer-related deaths worldwide and was ranked as the second most common cause of cancer death in the United States in 2022. Currently, clinicians face diagnostic... Read more

Hematology

view channel
Image: QScout CBC will give a complete blood count in 2 minutes from fingerstick or venous blood (Photo courtesy of Ad Astra Diagnostics)

Next Gen CBC and Sepsis Diagnostic System Targets Faster, Earlier, Easier Results

Every hour is critical in protecting patients from infections, yet there are currently limited tools to assist in early diagnosis before patients reach a hospital. The complete blood count (CBC) is a common... Read more

Microbiology

view channel
Image: The InfectoSynovia test has the potential to revolutionize the diagnosis of periprosthetic joint infection (Photo courtesy of 123RF)

High-Accuracy Bedside Test to Diagnose Periprosthetic Joint Infection in Five Minutes

Periprosthetic joint infection (PJI) represents a significant global issue that is worsening as the number of joint replacements increases due to aging populations. In the United States alone, the anticipated... Read more

Pathology

view channel
Image

AI-Based Method Shows Promise for Pathological Diagnosis of Hereditary Kidney Diseases

Alport syndrome is a hereditary kidney disorder characterized by kidney dysfunction, sensorineural hearing loss, and ocular abnormalities. Early in the disease, patients experience hematuria, which is... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.