We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genomic Analyses Improves Transfusion Therapy for Sickle Cell Disease

By LabMedica International staff writers
Posted on 25 Dec 2013
Print article
Image: Scanning electron micrograph of blood from a patient with sickle cell anemia (Photo courtesy of the OpenStax College).
Image: Scanning electron micrograph of blood from a patient with sickle cell anemia (Photo courtesy of the OpenStax College).
Molecular methods, including customized DNA microarrays, are increasingly used to complement serologic methods in predicting blood groups.

Red cell (RBC) blood group alloimmunization remains a major problem in transfusion medicine and patients with sickle cell disease (SCD) are at particularly high risk for developing alloantibodies to RBC antigens compared to other multiply transfused patient populations.

Immunologists at the New York Blood Center (NY, USA) and their colleagues at the Children's Hospital & Research Center Oakland (CA, USA) determined the diversity and frequency of RH alleles in African-Americans to assess the performance of a DNA microarray for RH allele determination. Hemagglutination is the classical method used to test for blood group antigens, but depending on the typing methods and reagents used may result in discrepancies that preclude interpretation based on serologic reactivity alone.

The scientists tested two sets of samples: individuals with known variant Rh types and randomly selected African-American donors, and patients with SCD. Standard hemagglutination tests were used to establish the Rh phenotype, and complementary DNA (cDNA)- and genomic (gDNA)-based analyses including sequencing, polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), and customized Rh blood group, D antigen (RHD) and Rh blood group, CcEe antigens (RHCE) microarrays were used to predict the genotype.

The scientists identified 1,658 alleles in a total of 829 samples, with 72 different alleles, 40 RHD and 32 RHCE, of which 22 were novel. DNA microarrays detected all nucleotides probed, allowing for characterization of over 900 alleles. The high-throughput DNA testing platforms provide a means to test a relatively large number of donors and potentially prevent immunization by changing the way antigen-negative blood is provided to patients.

The authors concluded that because of the high RH allelic diversity found in the African-American population, determination of an accurate Rh phenotype often requires DNA testing in conjunction with serologic testing. Allele-specific microarrays offer a means to perform high-throughput donor Rh typing and serve as a valuable adjunct to serologic methods to predict Rh type. Next Generation Sequencing holds the greatest potential to accurately characterize blood group phenotypes and ameliorate the clinical course of multiply transfused patients with sickle cell disease. The study was published on December 2, 2103, in the journal Blood Cells, Molecules, and Diseases.

Related Links:

New York Blood Center 
Children's Hospital & Research Center Oakland


Gold Member
Flocked Fiber Swabs
Puritan® Patented HydraFlock®
Automated Blood Typing System
IH-500 NEXT
New
FLU/RSV Test
Humasis FLU/RSV Combo
New
Thyroxine ELISA
T4 ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.