We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Clinical Performance Supports New Diagnostic Assay for Multiple Sclerosis

By LabMedica International staff writers
Posted on 03 Feb 2014
Print article
Image: Graph summarizing results from clinical studies of MSPrecise demonstrating positive performance in identifying patients with multiple sclerosis (Photo courtesy of DioGenix).
Image: Graph summarizing results from clinical studies of MSPrecise demonstrating positive performance in identifying patients with multiple sclerosis (Photo courtesy of DioGenix).
New clinical data from a validation study demonstrates positive performance with a novel molecular test developed to facilitate identification of patients with multiple sclerosis.

DioGenix (Gaithersburg, MD, USA) has announced the new data supporting the clinical validation of "MSPrecise,” its proprietary next-generation sequencing (NGS) assay for the identification of patients with multiple sclerosis (MS) at first clinical presentation. The test performed consistently with previous clinical studies, having a specificity of 82% while maintaining sensitivity comparable to what has been published for the current standard-of-care (p=0.0027).

Over 200 subjects being evaluated for nonspecific neurological symptoms that could be MS, were enrolled in the prospective, blinded clinical trial that evaluated and thus validated the performance of MSPrecise. These subjects were undergoing a comprehensive evaluation using the current standard-of-care for imaging of the central nervous system (CNS) and analysis of their cerebral spinal fluid and blood.

This study compared the results of MSPrecise DNA mutational analysis with a consensus diagnosis made by a panel of independent neurologists chosen for their significant clinical experience in diagnosing and treating MS. The MSPrecise interpretive scoring system provides a simple scaled score to the neurologist who differentiates patients with MS from those with other similarly presenting neurological diseases. Thirteen MS clinical centers of excellence participated in the trial—believed to be the largest prospective diagnostic study of its kind in MS—with over 20 thought-leading clinicians consenting subjects. Results from this study will now be submitted for peer review.

The results are consistent with two prior DioGenix studies that compared MSPrecise to published performance data for the oligoclonal banding (OCB) test and experimental controls. In a previous, mainly retrospective verification study, MSPrecise demonstrated a clear improvement in the ability to classify early-stage MS patients from those with other similarly presenting neurological diseases in comparison to OCB analysis. Individuals who present with clinical symptoms and evidence of nonspecific neurological disease undergo a battery of tests in a diagnostic process that can take months or even years to complete. The diagnostic standard-of-care for MS includes CSF analysis using the OCB test alongside a comprehensive set of clinical tests to rule-out other neurological diseases. Unfortunately, the OCB test yields a high rate of false-positive results, which can unnecessarily expose patients who do not have MS to chronic and expensive therapy that, in some cases, actually exacerbates their underlying disease.

“MSPrecise should offer neurologists greater insight into early disease events by exploiting the incredible biological resolution provided by next-generation sequencing. As we are able to now more accurately measure these key early biological changes, we believe we can help inform more appropriate courses of treatment for individuals who suffer from these types of immune-mediated diseases,” said Larry Tiffany, President and CEO, DioGenix.

“MSPrecise interrogates key genes involved in the immune system of patients being evaluated for MS. The growing body of evidence indicates this NGS assay may advance our efforts to more accurately diagnose patients with MS or other immune-mediated neurological disease,” said Elliot M. Frohman, MD, PhD, FAAN, Professor of Neurology & Ophthalmology, and Director, MS Program and Clinical Center for MS at The University of Texas Southwestern Medical Center. MSPrecise utilizes NGS to measure mutations found in rearranged immunoglobulin genes in immune cells initially isolated from cerebrospinal fluid. MSPrecise would augment the current standard-of-care for MS diagnosis by providing a more accurate measurement of a patient’s immune response to a challenge within the CNS. This novel method of measuring changes in adaptive human immunity may also be able to discern individuals whose disease is more progressive and requires more aggressive treatment.

DioGenix continues its sponsored research to determine if the same DNA mutation signature in patients with MS found in cerebral spinal fluid can be readily detected in blood. This research is supported by Fast Forward, a subsidiary of the [US] National MS Society.

Related Links:

DioGenix


Gold Member
Serological Pipet Controller
PIPETBOY GENIUS
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Silver Member
Apolipoprotein A-I Assay
Apo A-I Assay
New
Toxoplasma Gondii Test
Toxo IgG ELISA Kit

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.