We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




ALS Associated Gene Identified Using Innovative Strategy

By LabMedica International staff writers
Posted on 11 Nov 2014
Print article
Image: Micrograph of a muscle biopsy from a patient with amyotrophic lateral sclerosis demonstrating the typical \"grouped atrophy\" of muscle fibers that occurs with denervation (Photo courtesy of the University of Utah).
Image: Micrograph of a muscle biopsy from a patient with amyotrophic lateral sclerosis demonstrating the typical \"grouped atrophy\" of muscle fibers that occurs with denervation (Photo courtesy of the University of Utah).
An innovative exome sequencing strategy has been used to identify a gene that encodes for a specific protein and is associated with familial amyotrophic lateral sclerosis (ALS), a fatal neurological disorder also known as Lou Gehrig's Disease.

Exome sequencing, in contrast to whole genome sequencing, relies on sequencing only the protein-coding genes in a genome and has been an effective and cost-efficient strategy for identifying disease-causing genetic mutations.

A team of scientists led by those at University of Massachusetts Medical School (Worcester, MA, USA) performed an exome-wide screen on 363 people with familial ALS (FALS) each of whom also had a family member with the condition. The investigators went onto analyze a further 272 FALS cases and 5,510 internal controls to confirm the overrepresentation as statistically significant and replicable. An analysis of every coding gene in the genome of these patients was performed and then searched for patterns of rare, damaging mutations that appeared more frequently in patients with ALS than in the general population.

The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of the extra 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. The protein TUBA4A helps build the microtubule network, one of the most important structural components of the nerve cell. The scientists found that the mutated TUBA4A protein is toxic to the neuron by weakening the entire microtubule network.

ALS is a progressive, neurodegenerative disorder affecting the motor neurons in the central nervous system. As motor neurons die, the brain's ability to send signals to the body's muscles is compromised. This leads to a loss of voluntary muscle movement, paralysis and eventually respiratory failure. The cause of most cases of ALS is not known and approximately 10% of cases are inherited.

John E. Landers, PhD, a professor of Neurology and senior author of the study said, “Every single one of us carries rare mutations which make the identification of disease-associated genes difficult. By analyzing the mutation rate of every gene in our patients and comparing them to the general population, we were able to show that the TUBA4A gene had an elevated frequency of mutation in patients.” The study was published on October 22, 2014, in the journal Neuron.

Related Links:

University of Massachusetts Medical School 


Gold Member
Blood Gas Analyzer
GEM Premier 7000 with iQM3
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
PSA Test
Human Semen Rapid Test
New
Vibrio Cholerae O1/O139 Rapid Test
StrongStep Vibrio Cholerae O1/O139 Antigen Combo Rapid Test

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.