We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Genetic Mutation Identified in Childhood Brain Disorder

By LabMedica International staff writers
Posted on 21 Aug 2018
Print article
Image: A comparison of an unaffected brain and an affected brain with pachygyria (Photo courtesy of Case Western Reserve University School of Medicine).
Image: A comparison of an unaffected brain and an affected brain with pachygyria (Photo courtesy of Case Western Reserve University School of Medicine).
Pachygyria is characterized by abnormal movement of brain nerve cells, known as neurons, during development of the brain and nervous system and is caused by a breakdown in the fetal neuronal migration process due to genetic or possibly environmental influences.

During normal embryonic growth, immature cells that later develop into specialized nerve cells (neurons) normally migrate to the brain's surface, making several layers of cells. When this process is impaired, the cells do not migrate to their locations, resulting in too few cell layers and absence (agyria) or incomplete development (pachygyria) of gyri.

A team of global genetics experts led by those at Case Western Reserve University Medical School (Cleveland, OH, USA) have discovered a genetic mutation and the faulty development process it triggers, causing a debilitating brain-based disorder in children, known as pachygyria. The scientists used genetic sequencing to study three families affected by the disease, and discovered that children with pachygyria have a mutation in both copies of the alpha-N-catenin gene (CTNNA2), each alteration coming from one parent. The mutation leads to loss of CTNNA2, which the team then showed affected how nerve cells travel from their source of origin in the developing brain to their concluding destination in what eventually becomes the neocortex, a process called neuronal migration.

The investigators found that when CTNNA2 is absent due to genetic mutation, excessive amounts of Actin-Related Proteins (ARP2/3) bind to actin, ultimately disrupting the mechanisms needed for appropriate migrating and branching out of nerve cells. Specifically, resultants ARP2/3 over-activity leads to excessive branching, which impairs neuron growth and stability. The finding raises the possibility of genetic engineering through techniques such as CRISPR-Cas9.

In addition to uncovering a key gene responsible for pachygyria and describing how its mechanisms operate, the scientists discovered a variation of the condition. Typically in cases of pachygyria, either the front or back of the brain displays smooth, non-wrinkled brain surface features. In cases of normal brain development, these areas are convoluted, resembling cauliflower in appearance. In the three families studied, they discovered that both the front and back of the brain were smooth.

The authors concluded that their findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons. Ashleigh E. Schaffer, PhD, an assistant professor of genetics and lead author of the study, said, “Our finding that alpha-N-catenin mutations cause pachygyria is an important step in understanding how neuronal development is regulated. The fact that we found this unique feature of back and front smooth brain led us to conclude that a new gene, not previously linked to pachygyria, is responsible. This turned out to be the case,” The study was published on July 16, 2018, in the journal Nature Genetics.

Related Links:
Case Western Reserve University Medical School

New
Gold Member
ANA & ENA Screening Assays
ANA and ENA Assays
Antipsychotic TDM AssaysSaladax Antipsychotic Assays
New
Nuclear Matrix Protein 22 Test
NMP22 Test
New
Alpha-1-Antitrypsin ELISA
IDK alpha-1-Antitrypsin ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.