We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Precise Measurement of DNA Length Polymorphisms Used to Diagnose Acute Myeloid Leukemia

By LabMedica International staff writers
Posted on 08 Feb 2021
Print article
Image: Bone marrow aspirate showing acute myeloid leukemia (Photo courtesy of Wikipedia Commons)
Image: Bone marrow aspirate showing acute myeloid leukemia (Photo courtesy of Wikipedia Commons)
By combining two powerful analytical tools, researchers have demonstrated the ability to diagnose diseases such as leukemia by quantifying both the size and proportion of DNA length polymorphisms.

DNA length polymorphisms are found in many serious diseases, and assessment of their length and abundance is often critical for accurate diagnosis. However, measuring their length and frequency remains challenging due to their variable and repetitive nature.

In response to this challenge, investigators at Virginia Commonwealth University (Richmond, USA) combined two powerful techniques, digital polymerase chain reaction (dPCR) and high-speed atomic force microscopy (HSAFM), to create a simple, rapid, and flexible method for quantifying both the size and proportion of DNA length polymorphisms.

PCR uses the DNA polymerase enzyme to exponentially clone samples of DNA or RNA for further experimentation or analysis. Instead of performing one reaction per well, dPCR involves partitioning the PCR solution into tens of thousands of nanoliter sized droplets. Atomic force microscopy is a type of scanning probe microscopy with demonstrated resolution on the order of fractions of a nanometer, better than 1000 times more sensitive than the optical diffraction limit. Data are gathered by "feeling" or "touching" the surface with a mechanical probe. Piezoelectric elements that facilitate tiny but accurate and precise movements on electronic command enable precise scanning.

In the current study, the investigators focused on internal tandem duplications (ITDs) located within the FLT3 gene, which are associated with acute myeloid leukemia and are often indicative of a poor prognosis. Using the combined approach, individual amplicons from each dPCR partition were imaged and sized directly. In an analysis of over 1.5 million HSAFM-imaged amplicons from cell line and clinical samples containing FLT3-ITDs, dPCR–HSAFM returned the expected variant length and variant allele frequency, down to 5% variant samples.

"The technology needed to detect DNA sequence rearrangements is expensive and limited in availability, yet medicine increasingly relies on the information it provides to accurately diagnose and treat cancers and many other diseases," said senior author Dr. Jason Reed, associate professor of physics at Virginia Commonwealth University. "We have developed a system that combines a routine laboratory process with an inexpensive yet powerful atomic microscope that provides many benefits over standard DNA sequencing for this application, at a fraction of the cost."

"We chose to focus on FLT3 mutations because they are difficult to diagnosis, and the standard assay is limited in capability," said Dr. Reed. "We plan to continue developing and testing this technology in other diseases involving DNA structural mutations. We hope it can be a powerful and cost-effective tool for doctors around the world treating cancer and other devastating diseases driven by DNA mutations."

The combined dPCR/ HSAFM procedure was described in the November 10, 2020, issue of the journal ACS Nano.

Related Links:
Virginia Commonwealth University

Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test
Automated Blood Typing System
IH-500 NEXT
New
Cortisol Rapid Test
Finecare Cortisol Rapid Quantitative Test
New
Incubator
HettCube 120

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.