We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress hp
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




'Fingerprint' Machine Learning Technique Identifies Different Bacteria in Seconds​

By LabMedica International staff writers
Posted on 08 Mar 2022
Print article
Image: Schematics of the general process of Raman data collection and analysis (Photo courtesy of KAIST)
Image: Schematics of the general process of Raman data collection and analysis (Photo courtesy of KAIST)

A synergistic combination of surface-enhanced Raman spectroscopy and deep learning serves as an effective platform for separation-free detection of bacteria in arbitrary media.

Researchers at the Korea Advanced Institute of Science and Technology (KAIST, Daejeon, Korea) have demonstrated a quicker, more accurate process for bacterial identification which can take hours and often longer, despite time being precious when diagnosing infections and selecting appropriate treatments. By teaching a deep learning algorithm to identify the “fingerprint” spectra of the molecular components of various bacteria, the researchers could classify various bacteria in different media with accuracies of up to 98%.

Bacteria-induced illnesses, those caused by direct bacterial infection or by exposure to bacterial toxins, can induce painful symptoms and even lead to death, so the rapid detection of bacteria is crucial to prevent the intake of contaminated foods and to diagnose infections from clinical samples, such as urine. Raman spectroscopy sends light through a sample to see how it scatters. The results reveal structural information about the sample - the spectral fingerprint - allowing researchers to identify its molecules. Surface-enhanced Raman spectroscopy (SERS) places sample cells on noble metal nanostructures that help amplify the sample’s signals.

However, it is challenging to obtain consistent and clear spectra of bacteria due to numerous overlapping peak sources, such as proteins in cell walls. To parse through the noisy signals, the researchers have implemented an artificial intelligence method called deep learning that can hierarchically extract certain features of the spectral information to classify data. They specifically designed their model, named the dual-branch wide-kernel network (DualWKNet), to efficiently learn the correlation between spectral features. Such ability is critical for analyzing one-dimensional spectral data, according to the researchers. The researchers now plan to use their platform to study more bacteria and media types, using the information to build a training data library of various bacterial types in additional media to reduce the collection and detection times for new samples.

“We developed a meaningful universal platform for rapid bacterial detection with the collaboration between SERS and deep learning,” said Professor Sungho Jo from the School of Computing. “We hope to extend the use of our deep learning-based SERS analysis platform to detect numerous types of bacteria in additional media that are important for food or clinical analysis, such as blood.”

Related Links:
KAIST 

Gold Member
Fully Automated Cell Density/Viability Analyzer
BioProfile FAST CDV
Automated Blood Typing System
IH-500 NEXT
New
CVD Risk Test
GammaCoeur CVD Risk ELISA Test
New
Food Allergens Assay Kit
Allerquant 14G A

Print article

Channels

Clinical Chemistry

view channel
Image: The new saliva-based test for heart failure measures two biomarkers in about 15 minutes (Photo courtesy of Trey Pittman)

POC Saliva Testing Device Predicts Heart Failure in 15 Minutes

Heart failure is a serious condition where the heart muscle is unable to pump sufficient oxygen-rich blood throughout the body. It ranks as a major cause of death globally and is particularly fatal for... Read more

Hematology

view channel
Image: The smartphone technology measures blood hemoglobin levels from a digital photo of the inner eyelid (Photo courtesy of Purdue University)

First-Of-Its-Kind Smartphone Technology Noninvasively Measures Blood Hemoglobin Levels at POC

Blood hemoglobin tests are among the most frequently conducted blood tests, as hemoglobin levels can provide vital insights into various health conditions. However, traditional tests are often underutilized... Read more

Immunology

view channel
Image: Under a microscope, DNA repair is visible as bright green spots (“foci”) in the blue-stained cell DNA. Orange highlights actively growing cancer cells (Photo courtesy of WEHI)

Simple Blood Test Could Detect Drug Resistance in Ovarian Cancer Patients

Every year, hundreds of thousands of women across the world are diagnosed with ovarian and breast cancer. PARP inhibitors (PARPi) therapy has been a major advancement in treating these cancers, particularly... Read more

Microbiology

view channel
Image: HNL Dimer can be a novel and potentially useful clinical tool in antibiotic stewardship in sepsis (Photo courtesy of Shutterstock)

Unique Blood Biomarker Shown to Effectively Monitor Sepsis Treatment

Sepsis remains a growing problem across the world, linked to high rates of mortality and morbidity. Timely and accurate diagnosis, along with effective supportive therapy, is essential in reducing sepsis-related... Read more

Pathology

view channel
Image: The AI program analyzes a microscopy image from a tumor biopsy and determines what genes are likely turned on and off in the cells it contains (Photo courtesy of Olivier Gevaert/Stanford Medicine)

AI Tool ‘Sees’ Cancer Gene Signatures in Biopsy Images

To assess the type and severity of cancer, pathologists typically examine thin slices of a tumor biopsy under a microscope. However, to understand the genomic alterations driving the tumor's growth, scientists... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.